这篇文章主要介绍了关于python调用xlsxwriter创建xlsx的方法,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下
通过pip安装xlsxwriter
pip install xlsxwriter
下面进行基本的操作演示:
1. 首先创建一个excel的文档
workbook = xlsxwriter.Workbook(dir)
2. 在文档中创建表
table_name = 'sheet1' worksheet = workbook.add_worksheet(table_name) # 创建一个表名为‘sheet1'的表,并返回这个表对象
3. 创建表后,就可以在表格上面进行写入操作
worksheet.write_column('A1', 5) # 在A1单元格写入数字5
有时候,我们想修改输入内容的格式,例如设置字体颜色加粗,斜体,日期格式等,这时候,就可以通过使用xlsxwriter提供的格式类。
具体可见:http://xlsxwriter.readthedocs.io/format.html
下面以写入一个粗体的红色的日期类为例
import datetime # 需要先把字符串格式化成日期 date_time = datetime.datetime.strptime('2017-1-25', '%Y-%m-%d') # 定义一个格式类,粗体的红色的日期 date_format = workbook.add_format({'bold': True, 'font_color': 'red', 'num_format': 'yyyy-mm-dd'}) # 写入该格式类 worksheet.write_column('A2', date_time, date_format)
4. xlsxwriter支持很多图表格式的插入
具体可以参见:http://xlsxwriter.readthedocs.io/chart.html
这里摘抄一段图标类型的介绍:
excel定义的图分两级类别描述,第一级分别有九大类,如下所示
area: 面积图
bar: 转置直方图
column: 柱状图
line: 直线图
pie: 饼状图
doughnut: 环形图
scatter: 散点图
stock: 股票趋势图
radar: 雷达图
第二级则是描述是否有连线,是否有平滑曲线等细节调整。
area stacked percent_stacked bar stacked percent_stacked column stacked percent_stacked scatter straight_with_markers straight smooth_with_markers smooth radar with_markers filled
下面举例绘制一个散点图。
chart1 = workbook.add_chart({'type': 'scatter', 'subtype': 'straight'}) chart1.set_title({'name': '图1'}) chart1.add_series({ 'name': '系列1', # 集合范围 'categories': '=sheet1!$A$1:$A$89', # 数值范围 'values': '=sheet1!$B$1:$B$89'), # 是否连线 'line': {'none': True}, # 默认图格式 'marker': {'type': 'automatic'}, }) # 设置y轴的范围 chart1.set_y_axis({'max': 1.1, 'min': 0}) chart1.set_size({'x_scale': 2, 'y_scale': 2}) # 把图例插入到表中的C2位置,并且设置横轴偏移量为25,纵轴偏移量为10 worksheet.insert_chart('C2', chart1, {'x_offset': 25, 'y_offset': 10})
以上这篇
详细的官方文档可见:http://xlsxwriter.readthedocs.io/
通过pip安装xlsxwriter
pip install xlsxwriter
下面进行基本的操作演示:
1. 首先创建一个excel的文档
workbook = xlsxwriter.Workbook(dir)
2. 在文档中创建表
table_name = 'sheet1' worksheet = workbook.add_worksheet(table_name) # 创建一个表名为‘sheet1'的表,并返回这个表对象
3. 创建表后,就可以在表格上面进行写入操作
worksheet.write_column('A1', 5) # 在A1单元格写入数字5
有时候,我们想修改输入内容的格式,例如设置字体颜色加粗,斜体,日期格式等,这时候,就可以通过使用xlsxwriter提供的格式类。
具体可见:http://xlsxwriter.readthedocs.io/format.html
下面以写入一个粗体的红色的日期类为例
import datetime # 需要先把字符串格式化成日期 date_time = datetime.datetime.strptime('2017-1-25', '%Y-%m-%d') # 定义一个格式类,粗体的红色的日期 date_format = workbook.add_format({'bold': True, 'font_color': 'red', 'num_format': 'yyyy-mm-dd'}) # 写入该格式类 worksheet.write_column('A2', date_time, date_format)
4. xlsxwriter支持很多图表格式的插入
具体可以参见:http://xlsxwriter.readthedocs.io/chart.html
这里摘抄一段图标类型的介绍:
excel定义的图分两级类别描述,第一级分别有九大类,如下所示
area: 面积图
bar: 转置直方图
column: 柱状图
line: 直线图
pie: 饼状图
doughnut: 环形图
scatter: 散点图
stock: 股票趋势图
radar: 雷达图
第二级则是描述是否有连线,是否有平滑曲线等细节调整。
area stacked percent_stacked bar stacked percent_stacked column stacked percent_stacked scatter straight_with_markers straight smooth_with_markers smooth radar with_markers filled
下面举例绘制一个散点图。
chart1 = workbook.add_chart({'type': 'scatter', 'subtype': 'straight'}) chart1.set_title({'name': '图1'}) chart1.add_series({ 'name': '系列1', # 集合范围 'categories': '=sheet1!$A$1:$A$89', # 数值范围 'values': '=sheet1!$B$1:$B$89'), # 是否连线 'line': {'none': True}, # 默认图格式 'marker': {'type': 'automatic'}, }) # 设置y轴的范围 chart1.set_y_axis({'max': 1.1, 'min': 0}) chart1.set_size({'x_scale': 2, 'y_scale': 2}) # 把图例插入到表中的C2位置,并且设置横轴偏移量为25,纵轴偏移量为10 worksheet.insert_chart('C2', chart1, {'x_offset': 25, 'y_offset': 10})
相关推荐:
The above is the detailed content of Python calls xlsxwriter to create xlsx method. For more information, please follow other related articles on the PHP Chinese website!

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Dreamweaver Mac version
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.
