这篇文章主要为大家详细介绍了Python3实现购物车功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本文实例为大家分享了Python3实现购物车功能的具体代码,供大家参考,具体内容如下
购物车要求:
1、启动程序后,输入用户名密码后,如果是第一次登录,让用户输入工资,然后打印商品列表
2、允许用户根据商品编号购买商品
3、用户选择商品后,检测余额是否够,够就直接扣款,不够就提醒
4、可随时退出,退出时,打印已购买商品和余额
5、在用户使用过程中, 关键输出,如余额,商品已加入购物车等消息,需高亮显示
6、用户下一次登录后,输入用户名密码,直接回到上次的状态,即上次消费的余额什么的还是那些,再次登录可继续购买
7、允许查询之前的消费记录
逻辑图:
执行代码:
#!/usr/bin/env python3 # Author: Robert # --*-- coding: utf-8 --*-- set = False #设置set 当输入为q就可以退出 file = open("购物车用户信息档案.txt","r+",encoding="utf-8") #读取购物车用户信息文件 f = str(file.read()) #将文件内容转化成字符串 for line in f: file_str = str(f) data = eval(file_str) #将字符串转换为字典data name = input("输入姓名:") password = input("输入密码:") while True: if name in data: #用户在档案中 if password in data[name]: #密码和用户名对应,校验正确,登录。 salary = float(data[name][password]) print('''\033[32;1m欢迎登录,当前余额为%s\033[0m'''%salary) break else: #否则密码错误,请重新输入 password = input("密码错误,请重新输入:") continue else: #否则判断为首次登录,将用户名,密码,工资存到用户信息文件中 password_salary = {} salary_str = input("欢迎首次登录,请输入你的工资:") salary = float(salary_str) password_salary[password] = salary #工资对应到密码 data[name] = password_salary #将密码-工资对应到用户名 file.seek(0) file.write(str(data)) file.tell() break list = [#购物清单 ["iphone",5800], ["sifei",800], ["macbook",17500], ["book",75], ["apple",5] ] file_list_r = open("历史购物信息.txt","r+",encoding="utf-8") file_list_r = str(file_list_r.read()) shoppinglist_dict = eval(file_list_r) if name not in shoppinglist_dict: shoppinglist_dict[name] = [] shoppinglist = shoppinglist_dict[name] shoppinglist_dict_now = [] choose = input("\n是否需要查询历史购物记录(y/n):") if choose == 'y': print("\n\n---------->历史购物记录<----------") print(shoppinglist) print("---------->结束<----------") while not set: #购物车开始 print("---------->商品清单<----------") for index,item in enumerate(list,1): print(index,item) print("---------->结束<----------") number = input("请输入想购买商品编号:") if number == "q": set = True data[name][password] = str(salary) file.seek(0) file.write(str(data)) file.tell() print("---------->购物清单<----------") print(shoppinglist) print("您的余额:",salary) print("---------->结束<----------") shoppinglist.extend(shoppinglist) shoppinglist_dict[name] = shoppinglist elif number.isdigit() == False: print("\033[31;1m输入不是编号内容,请重新输入\033[0m") elif int(number)>int(len(list)) or int(number)<= 0: #输入值不在清单中,报错 print("\033[31;1m您所购买的商品不在清单中\033[0m") else: number_buy = int(number)-1 if list[number_buy][1]<(salary): #如果余额足够,提示购买成功并显示余额。 salary = salary - int(list[number_buy][1]) msg = '\033[32;1m您已经将%s加入购物车中,余额为%d\033[0m'%(list[number_buy][0],salary) print(msg) shoppinglist.append(list[number_buy]) #将本次购物信息加到购买记录中 else: print("\033[31;1m余额不足,无法购买!\033[0m") #提示余额不足
购物车用户信息档案.txt
{'name': {'password': '10000'}, 'cx': {'123': '725.0'}, 'robert': {'qw': '440.0'}, 'cv1': {'1': 100.5}, 'ROBERT': {'QW': 1560.0}, 'qwe': {'qw': '1555.0'}}
历史购物信息.txt
{'name': [['iphone', 5800],['bike', 800]], 'cx':[['iphone', 5800],['apple', 5],['apple', 5], ['book', 75]]}
相关推荐:
The above is the detailed content of Python3 implements shopping cart function. For more information, please follow other related articles on the PHP Chinese website!

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver Mac version
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Mac version
God-level code editing software (SublimeText3)