Home > Article > Backend Development > How to deal with boolean arrays in numpy
The following is a detailed explanation of the processing method of Boolean arrays in numpy. It has a good reference value and I hope it will be helpful to everyone. Let's take a look together
There are two main ways to operate Boolean arrays. any is used to check whether there is a True value in the array, and all is used to check whether the array is all True.
If used for calculation, the Boolean quantity will be converted to 1 and 0, True will be converted to 1, and False will be converted to 0. This method can count the number of True in a Boolean array.
If ordinary arrays are used for Boolean operations, there will be similar data type conversions. Among them, non-zero values are converted to True, and 0 is converted to False.
In [30]: arr = randn(100)
##In [31]: arr
Out[31]:
array([ 1.38474589, -1.51489066,-0.81053544, 1.47875437, -0.53638642,0.09856211, 1.39931492,-0.04226221, -0.6 6064836, 0.31829036,-0.33759781, -0.35793518, 0.66974626, 1.5989403, 0.98361013,0.0209635, -0.56165749, 0.59473585, -0.06956145, -0.5038 4339,-0.51207066, -0.41794862, 2.12230002, 0.55457739 . 29060339, -0.18960502,-0.91537419 . 72333408, -0.9656567, -0.04391422, -0.53504402, -0.3695063, -0.57323435, -0.09923021, -0.8819845, -0.31904228, -0.34805511,-1.39372713, -0.32243494, 1.18074562, -0.77189808, 0.1 4011272,-0.12029721, 0.91164114 0.3052017 29870036,-0.71204709, 0.46825521, -0.76507537, -0.67755756, 1.38798882, 0.44536155, 0.41104869, -0.24990925,##-0.38003931, 1.13801121, 0.19761371, 0.84638972, 1.0581644 6,
-0.03591458, 2.35862529, 1.69183501, 0.77490116, -1.47556029,
-0.54755786, -0.93202001, 0.69240349, -0.02720469, 0.49363318,
##0.55501151, -1.67184849, -1.61725652, -0.95964244, 0.12177 363])In [32]: arr > 0
Out[32]:
array([ True, False, False, True, False, True, True, False, False ,True, False, False, True, True, True, True, False, True,False, False, False, False, True, True, False, False, False,False, True, False, True, True, False, True, False, False,False, True, True, True, False, True, False, False,False,
True, False, False, False, False, False, False, False, False,False, False, False, True,False, True, False, True, True,
False, True, True, True, True, True, False, False, True,False, True, False, False, True, True, True, False, False,True , True, True, True, False, True, True, True, False,False, False, True, False, True, True, False, False, False, True],dtype=bool)In [33]: (arr > 0).sum()
Out[33]: 46
In [34]: arr.any()
Out[34]: True
In [35]: arr.all ()
Out[35]: True
In [36]: (arr > 0).all()
Out[36]: False
Related recommendations:
Numpy masked array detailed explanation
The above is the detailed content of How to deal with boolean arrays in numpy. For more information, please follow other related articles on the PHP Chinese website!