Home >Backend Development >Python Tutorial >mnist classification example for getting started with Pytorch
This article mainly introduces the mnist classification example for getting started with Pytorch in detail. It has certain reference value. Interested friends can refer to it.
The example in this article shares with you the mnist for getting started with Pytorch. The specific code of the classification is for your reference. The specific content is as follows
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'denny' __time__ = '2017-9-9 9:03' import torch import torchvision from torch.autograd import Variable import torch.utils.data.dataloader as Data train_data = torchvision.datasets.MNIST( './mnist', train=True, transform=torchvision.transforms.ToTensor(), download=True ) test_data = torchvision.datasets.MNIST( './mnist', train=False, transform=torchvision.transforms.ToTensor() ) print("train_data:", train_data.train_data.size()) print("train_labels:", train_data.train_labels.size()) print("test_data:", test_data.test_data.size()) train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True) test_loader = Data.DataLoader(dataset=test_data, batch_size=64) class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Sequential( torch.nn.Conv2d(1, 32, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2)) self.conv2 = torch.nn.Sequential( torch.nn.Conv2d(32, 64, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2) ) self.conv3 = torch.nn.Sequential( torch.nn.Conv2d(64, 64, 3, 1, 1), torch.nn.ReLU(), torch.nn.MaxPool2d(2) ) self.dense = torch.nn.Sequential( torch.nn.Linear(64 * 3 * 3, 128), torch.nn.ReLU(), torch.nn.Linear(128, 10) ) def forward(self, x): conv1_out = self.conv1(x) conv2_out = self.conv2(conv1_out) conv3_out = self.conv3(conv2_out) res = conv3_out.view(conv3_out.size(0), -1) out = self.dense(res) return out model = Net() print(model) optimizer = torch.optim.Adam(model.parameters()) loss_func = torch.nn.CrossEntropyLoss() for epoch in range(10): print('epoch {}'.format(epoch + 1)) # training----------------------------- train_loss = 0. train_acc = 0. for batch_x, batch_y in train_loader: batch_x, batch_y = Variable(batch_x), Variable(batch_y) out = model(batch_x) loss = loss_func(out, batch_y) train_loss += loss.data[0] pred = torch.max(out, 1)[1] train_correct = (pred == batch_y).sum() train_acc += train_correct.data[0] optimizer.zero_grad() loss.backward() optimizer.step() print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len( train_data)), train_acc / (len(train_data)))) # evaluation-------------------------------- model.eval() eval_loss = 0. eval_acc = 0. for batch_x, batch_y in test_loader: batch_x, batch_y = Variable(batch_x, volatile=True), Variable(batch_y, volatile=True) out = model(batch_x) loss = loss_func(out, batch_y) eval_loss += loss.data[0] pred = torch.max(out, 1)[1] num_correct = (pred == batch_y).sum() eval_acc += num_correct.data[0] print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len( test_data)), eval_acc / (len(test_data))))
Related recommendations:
How to read it in python Detailed explanation of binary mnist examples
A good introductory tutorial to Python_python
The above is the detailed content of mnist classification example for getting started with Pytorch. For more information, please follow other related articles on the PHP Chinese website!