The content of this article is to share with you an in-depth understanding of the coroutine function in python, which has a certain reference value. Friends in need can refer to it
Concept:
According to the definition given by Wikipedia, "Coroutines are computer program components that generate subroutines for non-preemptive multitasking. Coroutines allow different entry points to pause or start program execution at different locations." From a technical perspective, "a coroutine is a function that you can pause execution of." If you understand it as "just like a generator", then you're thinking right.
Coroutine, also known as micro-thread, looks like a subroutine, but it is different from a subroutine. During the execution process, it can interrupt the current subroutine. After the program executes other subroutines, it returns to execute the previous subroutine, but its related information is still the same as before.
Coroutines are different from threads. Threads are preemptive scheduling, while coroutines are collaborative scheduling. Coroutines need to do their own scheduling.
Subroutine calls always have one entrance and one return, and the calling sequence is clear. The calling of coroutines is different from subroutines. Coroutines also look like subprograms, but during execution, they can be interrupted inside the subprogram, then switch to executing other subprograms, and then return to continue execution at the appropriate time.
Advantages of coroutines:
The advantage of coroutines is extremely high execution efficiency. Because subroutine switching is not thread switching, but is controlled by the program itself, there is no overhead of thread switching. Compared with multi-threading, the greater the number of threads, the more obvious the performance advantages of coroutines. It is very suitable for performing coroutine multitasking.
Coroutines have no thread safety issues. A process can have multiple coroutines at the same time, but only one coroutine is active, and the activation and dormancy of coroutines are controlled by programmers through programming, not by the operating system.
Generator implements coroutine principle
Example:
def func(n): index=0 if index<=n: c=yield 1 print("task------{}".format(c)) index+=1f=func(3) n=next(f) print(n)try: n=f.send(5)#程序就直接结束了 print("n是{}".format(n))except StopIteration as e: pass
输出打印:1task------5
Explanation:
Obviously func is a generator, and the send method has a parameter that specifies the return value of the last suspended yield statement.
send requires exception handling.
In general, the only difference between the send method and the next method is that when executing the send method, the return value of the last pending yield statement will first be set through parameters to achieve Interaction with generator methods. However, it should be noted that before a generator object executes the next method, since no yield statement is suspended, an error will be reported when executing the send method.
When the parameter of the send method is None, it is completely equivalent to the next method.
The generator implements the producer and consumer patterns:
def cunsumer(): while True: n=yield 3 if not n: return print('cunsumer{}'.format(n))def product(c): c.send(None) n=0 while n<5: n=n+1 r=c.send(n) print("product{}".format(r)) c.close() c=cunsumer() product(c)
打印: cunsumer1 product3 cunsumer2 product3 cunsumer3 product3 cunsumer4 product3 cunsumer5 product3
Explanation:
Execute first in the producer The purpose of c.send(None) is to let the consumer hang up first, and then use send to pass the value. The first time 1 is passed, the consumer prints 1, and the producer prints r which is the value after the consumer's yield.
Introduction of greenlet
Although CPython (standard Python) can implement coroutines through generators, it is not very convenient to use.
At the same time, Stackless Python, a derivative of Python, implements native coroutines, which is more convenient to use.
So, everyone began to take out the coroutine code in Stackless and make it into a CPython expansion package.
This is the origin of greenlet, so greenlet is a C extension library that implements native coroutines at the bottom.
Code description:
from greenlet import greenletimport randomimport timedef Producer(): while True: item = random.randint(0,10) print("生产了{}".format(item)) c.switch(item)#切换到消费者,并将item传入消费者 time.sleep(1)def consumer(): print('我先执行') #p.switch() while True: item = p.switch()#切换到生产者,并且等待生产者传入item print('消费了{}'.format(item)) c = greenlet(consumer)#将一个普通函数变成一个协程p = greenlet(Producer) c.switch()#让消费者先进入暂停状态(只有恢复了才能接收数据)
Value of greenlet:
High-performance native coroutine
Explicit switching with clearer semantics
Wrap functions directly into coroutines and maintain the original code style
gevent coroutine
Although we have a callback programming model based on epoll, it is difficult to use.
Even though we can make complex encapsulation with generator coroutine to simplify programming difficulty.
But there is still a big problem: encapsulation is difficult, and the existing code must be almost completely rewritten
gevent, by encapsulating the two libraries libev (based on epoll) and greenlet.
Help us encapsulate it and allow us to use coroutines in a thread-like manner.
So that we can make full use of the power of epoll and coroutines without rewriting the original code.
Code diagram:
from gevent import monkey;monkey.patch_all()#会把python标准库当中一些阻塞操作变成非阻塞import geventdef test1(): print("11") gevent.sleep(4)#模拟爬虫请求阻塞 print("33")def test2(): print("22") gevent.sleep(4) print("44") gevent.joinall([gevent.spawn(test1),gevent.spawn(test2)])#joinall 阻塞当前协程,执行给定的greenlet#spawn 启动协程,参数就是函数的名字
The value of gevent:
Switch to another coroutine to continue execution when it encounters blocking !
Use epoll-based libev to avoid blocking.
Use efficient coroutines based on gevent to switch execution.
Only switches when encountering blocking. There is no round-robin overhead or thread overhead.
gevent implements concurrent server
from gevent import monkey;monkey.patch_all() #建议放在首行,会把python标准库当中一些阻塞操作变成非阻塞import geventimport socket server=socket.socket() server.bind(('',6666)) server.listen(5) print("开始监听")def readable(con,addr): print("客户端{}接入".format(addr)) while True: data=con.recv(1024) if data: print(data) else: con.close() breakwhile True: con,addr=server.accept() gevent.spawn(readable,con,addr)#将readable函数变为协程,并且把con和addr传入其中。
gevent coroutine communication
gevent also has its own queue. The usage is basically the same as threading.
Producer and consumer patterns based on gevent and queue
from gevent import monkey;monkey.patch_all()import geventfrom gevent.queue import Queueimport randomdef producter(queue): while True: item=random.randint(0,99) print('生产了{}'.format(item)) queue.put(item) gevent.sleep(1)def comuser(queue): while True: item=queue.get() print('消费了{}'.format(item)) queue=Queue() p=gevent.spawn(producter,queue) c=gevent.spawn(comuser,queue) gevent.joinall([p,c])
打印: 生产了33消费了33生产了95消费了95生产了92消费了92...
相关推荐:
The above is the detailed content of Deep understanding of coroutine functions in python. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.