这次给大家带来python操作excel读写数据,python操作excel读写数据的注意事项有哪些,下面就是实战案例,一起来看一下。
本文实例为大家分享了python操作EXCEL的实例源码,供大家参考,具体内容如下
读EXCEL的操作:把excel的数据存储为字典类型
#coding=utf8 #导入读excel的操作库 import xlrd class GenExceptData(object): def init(self): try: self.dataDic={} #打开工作薄 self.wkbook= xlrd.open_workbook("Requirement.xls") #获取工作表“requirement” self.dataSheet=self.wkbook.sheet_by_name("requirement") #把数据按 按照相应格式写入excel表中 self.readDataToDicl() #保存文件 except Exception,e: print "Read Excel error:",e def readDataToDicl(self): try: nrows = self.dataSheet.nrows ncols = self.dataSheet.ncols print ncols ,nrows try: for rowNum in range(1,nrows): #把数据的当前行的元素与上一行元素作比较 #如果不相等执行if语句 try: singleJson={} propertyName=self.dataSheet.cell(rowNum,3).value propertyValue=self.dataSheet.cell(rowNum,4).value if self.dataSheet.cell(rowNum,0).value and self.dataSheet.cell(rowNum,2).value: mdEvent=self.dataSheet.cell(rowNum,0).value singleJson["serviceId"]=self.dataSheet.cell(rowNum,2).value singleJson[propertyName]=propertyValue print singleJson self.dataDic[mdEvent]=singleJson singleJson.clear() except Exception,e: print "Get Data Error:",e except Exception,e: print "Reading Data Error:",e except Exception,e: print "Reading Data TO Dic Error:",e def test(): GenExceptData() if name=="main": test()
写EXCEL的操作:把csv文件的数据按照需求写入到excel文件中
#coding=utf8 from readCSV import readCSV import xlwt class GenTestCase(): def init(self,path="E:\\PythonDemo\\OperExcel\\Demo.csv"): self.dataInfor=readCSV(path) #创建工作薄 self.wkbook=xlwt.Workbook() #创建表:“埋点需求” self.dataSheet=self.wkbook.add_sheet("shellt") self.creatHead() def creatHead(self): firstLine=[] #创建表头 for index in range(len(firstLine)): self.dataSheet.write(0,index,firstLine[index]) dataBody=self.dataInfor.buffer print dataBody.len() currentrow=1 for rowNum in range(1,len(dataBody)): for index in range(len(dataBody[rowNum])): if rowNum>1: if dataBody[rowNum-1][0]!=dataBody[rowNum][0] : print currentrow,rowNum if currentrow==1: for cols in range(3): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow,rowNum-1,cols,cols,data) for cols in range(6,13): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow,rowNum-1,cols,cols,data) else: for cols in range(3): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow-1,rowNum-1,cols,cols,data) for cols in range(6,12): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow-1,rowNum-1,cols,cols,data) currentrow=rowNum+1 break for cols in range(3,6): cellValue=dataBody[rowNum][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write(rowNum,cols,data) self.wkbook.save(r'reqq.xlsx') def test(): GenTestCase() if name=="main": test()
相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!
推荐阅读:
The above is the detailed content of Python operates excel to read and write data. For more information, please follow other related articles on the PHP Chinese website!

JavaScript core data types are consistent in browsers and Node.js, but are handled differently from the extra types. 1) The global object is window in the browser and global in Node.js. 2) Node.js' unique Buffer object, used to process binary data. 3) There are also differences in performance and time processing, and the code needs to be adjusted according to the environment.

JavaScriptusestwotypesofcomments:single-line(//)andmulti-line(//).1)Use//forquicknotesorsingle-lineexplanations.2)Use//forlongerexplanationsorcommentingoutblocksofcode.Commentsshouldexplainthe'why',notthe'what',andbeplacedabovetherelevantcodeforclari

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor
