The content of this article is to share with you how python3 packages python code into exe files. Friends in need can refer to it
Basic configuration:
Anaconda 3 4.2.0 (python3.5)
Note:
1. The code is stored in the full English directory;
2. Computer Temporarily close security software such as butler (because the released exe file is an executable file, computer butler may think that the released file is a virus and automatically delete it)
The specific steps are as follows:
1. Store the written python code in an all-English directory:
import keras from keras.models import Sequential import numpy as np import pandas as pd from keras.layers import Dense import random import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data from tkinter import filedialog import tkinter.messagebox #这个是消息框,对话框的关键 file_path = filedialog.askdirectory() mnist = input_data.read_data_sets(file_path, validation_size=0) #随机挑选其中一个手写数字并画图 num = random.randint(1, len(mnist.train.images)) img = mnist.train.images[num] plt.imshow(img.reshape((28, 28)), cmap='Greys_r') plt.show() x_train = mnist.train.images y_train = mnist.train.labels x_test = mnist.test.images y_test = mnist.test.labels #reshaping the x_train, y_train, x_test and y_test to conform to MLP input and output dimensions x_train = np.reshape(x_train, (x_train.shape[0], -1)) x_test = np.reshape(x_test, (x_test.shape[0], -1)) y_train = pd.get_dummies(y_train) y_test = pd.get_dummies(y_test) #performing one-hot encoding on target variables for train and test y_train=np.array(y_train) y_test=np.array(y_test) #defining model with one input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer [10 #neurons] model=Sequential() model.add(Dense(784, input_dim=784, activation='relu')) keras.layers.core.Dropout(rate=0.4) model.add(Dense(10,input_dim=784,activation='softmax')) # compiling model using adam optimiser and accuracy as metric model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy']) # fitting model and performing validation model.fit(x_train, y_train, epochs=20, batch_size=200, validation_data=(x_test, y_test)) y_test1 = pd.DataFrame(model.predict(x_test, batch_size=200)) y_pre = y_test1.idxmax(axis = 1) result = pd.DataFrame({'test': y_test, 'pre': y_pre}) tkinter.messagebox.showinfo('Message', 'Completed!')
2. Through the command line, follow pyinstaller
pip install pyinstaller
3. Command line packaging file
First switch the path to the directory where the python code is located, and execute the statement:
pyinstaller -F -w xxx.py
4, Waiting for the packaging to be completed, a build folder and a dist folder will be generated. The exe executable file is in the dist folder. If the program references resources , then the resource files must be placed in the correct relative directory of the exe.
5. Run the exe file.
#Sometimes there will be an error when running the file. In this case, you need to copy the folder shown below to the directory where the exe file is located
Run successfully!
Related recommendations:
Summary of methods for packaging folders in Python (zip, tar, tar.gz, etc.)
Introducing a Python packaging tool (py2exe)
The above is the detailed content of python3 method to package python code into exe file. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 English version
Recommended: Win version, supports code prompts!

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools
