Home > Article > Backend Development > How to implement visual boxplot in python
This article mainly introduces how to implement visual box plots in python. The editor thinks it is quite good. Now I will share it with you and give it a reference. Let’s follow the editor to take a look.
plt.boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None)
x: Specify the data to be drawn as a box plot;
notch: Whether to display the boxplot in the form of a notch, the default is not notch;
sym: Specify the shape of the abnormal point, the default is + sign display;
vert: Whether the boxplot needs to be placed vertically, the default is vertical Placement;
whis: Specify the distance between the upper and lower whiskers and the upper and lower quartiles, the default is 1.5 times the interquartile range;
positions: Specify the position of the box plot, the default is [0,1,2… ];
widths: Specify the width of the boxplot, the default is 0.5;
patch_artist: Whether to fill the color of the box;
meanline: Whether to express the mean in the form of a line, the default is to use points;
showmeans: Whether to display the mean, not displayed by default;
showcaps: Whether to display the two lines at the top and end of the box plot, displayed by default;
showbox: Whether to display the box of the box plot, displayed by default;
showfliers: Whether to display outliers, displayed by default;
boxprops: Set the properties of the box, such as border color, fill color, etc.;
labels: Add labels to the box plot, similar to the function of the legend;
filerprops: Set the properties of outliers, such as the shape, size, fill color, etc. of outliers;
medianprops: Set the properties of the median, such as line type, thickness, etc.;
meanprops: Set the mean properties, such as point size, color, etc.;
capprops: Set the properties of the top and end lines of the box plot, such as color, thickness, etc.;
whiskerprops: Set the properties of the whiskers, such as color, thickness, line Type, etc.;
# 导入第三方模块 import pandas as pd import matplotlib.pyplot as plt # 读取Titanic数据集 titanic = pd.read_csv('titanic_train.csv') # 检查年龄是否有缺失 any(titanic.Age.isnull()) # 不妨删除含有缺失年龄的观察 titanic.dropna(subset=['Age'], inplace=True) # 设置图形的显示风格 plt.style.use('ggplot') # 设置中文和负号正常显示 plt.rcParams['font.sans-serif'] = 'Microsoft YaHei' plt.rcParams['axes.unicode_minus'] = False # 绘图:整体乘客的年龄箱线图 plt.boxplot(x = titanic.Age, # 指定绘图数据 patch_artist=True, # 要求用自定义颜色填充盒形图,默认白色填充 showmeans=True, # 以点的形式显示均值 boxprops = {'color':'black','facecolor':'#9999ff'}, # 设置箱体属性,填充色和边框色 flierprops = {'marker':'o','markerfacecolor':'red','color':'black'}, # 设置异常值属性,点的形状、填充色和边框色 meanprops = {'marker':'D','markerfacecolor':'indianred'}, # 设置均值点的属性,点的形状、填充色 medianprops = {'linestyle':'--','color':'orange'}) # 设置中位数线的属性,线的类型和颜色 # 设置y轴的范围 plt.ylim(0,85) # 去除箱线图的上边框与右边框的刻度标签 plt.tick_params(top='off', right='off') # 显示图形 plt.show()
Related recommendations:
Python data visualization: box plot
The above is the detailed content of How to implement visual boxplot in python. For more information, please follow other related articles on the PHP Chinese website!