PHP Inversion of Control and Dependency Injection Examples
This article mainly shares with you PHP control inversion and dependency injection examples. The purpose of dependency injection is to achieve a loosely coupled software architecture for better testing, management and expansion of code.
Inversion of Control: When the caller needs the help of the callee, in the traditional programming process, the caller usually creates the callee. instance of the caller, but here the work of creating the callee is no longer done by the caller, but the creation of the callee is moved outside the caller, thus reversing the creation of the callee and eliminating the call The control created by the caller over the callee is therefore called inversion of control.
Dependency Injection: To achieve inversion of control, the usual solution is to leave the work of creating the callee instance to the IoC container, and then in the caller Injecting the callee (implemented through constructor/method injection), so that we achieve the decoupling of the caller and the callee, this process is called dependency injection. Dependency injection is an implementation of inversion of control. There are three common injection methods: setter, constructor injection, and property injection.
Container (Container): Manage the life cycle of object generation, resource acquisition, destruction, etc., establish dependencies between objects, and can delay loading of objects. The more famous ones are PHP-DI and Pimple.
Code demonstration IoC:
Assuming that the application has storage requirements, if the low-level module API is directly called in the high-level application, the application will Modules create dependencies.
<?php /** * 高层 */ class App { private $writer; public function __construct() { $this->writer = new FloppyWriter(); } public function save() { $this->writer->saveToFloppy(); } } /** * 低层,软盘存储 */ class FloppyWriter { public function saveToFloppy() { echo __METHOD__; } } $app = new App(); $app->save(); // FloppyWriter::saveToFloppy
Assuming that the program is to be ported to another platform, and that platform uses a USB disk as a storage medium, the program cannot be directly reused and must be modified. In this case, due to changes in the low-level, the high-level changes also follow, which is a bad design. Programs should not rely on concrete implementations, but on abstract interfaces. Please see the code demonstration:
<?php /** * 接口 */ interface IDeviceWriter { public function saveToDevice(); } /** * 高层 */ class App { /** * @var IDeviceWriter */ private $writer; /** * @param IDeviceWriter $writer */ public function setWriter($writer) { $this->writer = $writer; } public function save() { $this->writer->saveToDevice(); } } /** * 低层,软盘存储 */ class FloppyWriter implements IDeviceWriter { public function saveToDevice() { echo __METHOD__; } } /** * 低层,USB盘存储 */ class UsbDiskWriter implements IDeviceWriter { public function saveToDevice() { echo __METHOD__; } } $app = new App(); $app->setWriter(new UsbDiskWriter()); $app->save(); // UsbDiskWriter::saveToDevice $app->setWriter(new FloppyWriter()); $app->save(); // FloppyWriter::saveToDevice
The control is transferred from the actual FloppyWriter to the abstract IDeviceWriter interface, making the App dependent on the IDeviceWriter interface, and FloppyWriter and UsbDiskWriter also depend on the IDeviceWriter interface.
This is IoC. In the face of changes, the high-level does not need to modify a line of code, and no longer relies on the low-level, but relies on injection, which leads to DI.
If this component has many dependencies, we need to create multiple parameter setter methods to pass dependencies, which makes our code difficult to maintain.
<?php //创建依赖实例 $request = new Request(); $filter = new Filter(); //把实例作为参数传递给构造函数 $some = new SomeComponent($request, $filter); $some->setRequest($request); $some->setFilter($filter);
The solution is to provide a container for the dependent instance. This container acts as a global registry, injected into the container rather than the specific instance.
<?php class SomeComponent { protected $_di; public function __construct($di) { $this->_di = $di; } public function someRequest() { // 请求实例 $connection = $this->_di->get('request'); } public function someOtherRequest() { // 请求实例 $connection = $this->_di->get('request'); // 过滤器实例 $filter = $this->_di->get('filter'); } } $di = new DI(); //在容器中注册一个request服务 $di->set('request', function() { return new Request(array( "test" => "test" )); }); //在容器中注册一个filter服务 $di->set('filter', function() { return new Filter(); }); //把传递服务的容器作为唯一参数传递给组件 $some = new SomeComponent($di); $some->someRequest();
This component can now easily obtain the services it needs. The services use lazy loading and are only initialized when needed, which also saves server resources. This component is now highly decoupled.
Related recommendations:
Analysis of PHP Dependency Injection and Inversion of Control
PHP Dependency Injection (DI) and Inversion of Control (IoC) Example Tutorial
PHP Inversion of Control and Dependency Injection
The above is the detailed content of PHP Inversion of Control and Dependency Injection Examples. For more information, please follow other related articles on the PHP Chinese website!

What’s still popular is the ease of use, flexibility and a strong ecosystem. 1) Ease of use and simple syntax make it the first choice for beginners. 2) Closely integrated with web development, excellent interaction with HTTP requests and database. 3) The huge ecosystem provides a wealth of tools and libraries. 4) Active community and open source nature adapts them to new needs and technology trends.

PHP and Python are both high-level programming languages that are widely used in web development, data processing and automation tasks. 1.PHP is often used to build dynamic websites and content management systems, while Python is often used to build web frameworks and data science. 2.PHP uses echo to output content, Python uses print. 3. Both support object-oriented programming, but the syntax and keywords are different. 4. PHP supports weak type conversion, while Python is more stringent. 5. PHP performance optimization includes using OPcache and asynchronous programming, while Python uses cProfile and asynchronous programming.

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP remains important in the modernization process because it supports a large number of websites and applications and adapts to development needs through frameworks. 1.PHP7 improves performance and introduces new features. 2. Modern frameworks such as Laravel, Symfony and CodeIgniter simplify development and improve code quality. 3. Performance optimization and best practices further improve application efficiency.

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP type prompts to improve code quality and readability. 1) Scalar type tips: Since PHP7.0, basic data types are allowed to be specified in function parameters, such as int, float, etc. 2) Return type prompt: Ensure the consistency of the function return value type. 3) Union type prompt: Since PHP8.0, multiple types are allowed to be specified in function parameters or return values. 4) Nullable type prompt: Allows to include null values and handle functions that may return null values.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment