


Detailed example of how Python handles concurrency issues through futures
This article mainly introduces Python to deal with concurrency issues through future. It is very good and has reference value. Friends in need can refer to it
future first introduction
Use the following script to have a preliminary understanding of future:
Example 1: Ordinary looping method
import os import time import sys import requests POP20_CC = ( "CN IN US ID BR PK NG BD RU JP MX PH VN ET EG DE IR TR CD FR" ).split() BASE_URL = 'http://flupy.org/data/flags' DEST_DIR = 'downloads/' def save_flag(img,filename): path = os.path.join(DEST_DIR,filename) with open(path,'wb') as fp: fp.write(img) def get_flag(cc): url = "{}/{cc}/{cc}.gif".format(BASE_URL,cc=cc.lower()) resp = requests.get(url) return resp.content def show(text): print(text,end=" ") sys.stdout.flush() def download_many(cc_list): for cc in sorted(cc_list): image = get_flag(cc) show(cc) save_flag(image,cc.lower()+".gif") return len(cc_list) def main(download_many): t0 = time.time() count = download_many(POP20_CC) elapsed = time.time()-t0 msg = "\n{} flags downloaded in {:.2f}s" print(msg.format(count,elapsed)) if __name__ == '__main__': main(download_many)
Example 2: Implemented through future method, here we reuse part of the above code
from concurrent import futures from flags import save_flag, get_flag, show, main MAX_WORKERS = 20 def download_one(cc): image = get_flag(cc) show(cc) save_flag(image, cc.lower()+".gif") return cc def download_many(cc_list): workers = min(MAX_WORKERS,len(cc_list)) with futures.ThreadPoolExecutor(workers) as executor: res = executor.map(download_one, sorted(cc_list)) return len(list(res)) if __name__ == '__main__': main(download_many)
Run three times respectively, the average speed of the two is: 13.67 and 1.59s, you can see The difference is still very big.
future
future is an important component of concurrent.futures module and asyncio module
From Starting from python3.4, there are two classes named Future in the standard library: concurrent.futures.Future and asyncio.Future
These two classes have the same function: instances of both Future classes represent things that may be completed or not yet completed. Delayed calculation. Similar to the Deferred class in Twisted and the Future class in the Tornado framework
Note: Normally you should not create a future yourself, but instantiate it by the concurrent framework (concurrent.futures or asyncio)
Reason: future represents something that will eventually happen, and the only way to determine that something will happen is that the execution time has been arranged, so only when something is handed over to the concurrent.futures.Executor subclass for processing, A concurrent.futures.Future instance will be created.
For example: the parameter of the Executor.submit() method is a callable object. After calling this method, the time will be scheduled for the incoming callable object and a
future
# will be returned. ##Client code should not change the state of the future. The concurrency framework will change the state of the future object after the delayed calculation represented by the future ends. We cannot control when the calculation ends. Both futures have a .done() method. This method does not block. The return value is a Boolean value, indicating whether the callable object linked to the future has been executed. Client code usually does not ask whether the future has finished running, but will wait for notification. Therefore, both Future classes have the .add_done_callback() method. This method has only one parameter, and the type is a callable object. The specified callable object will be called after the future runs. The .result() method has the same function in the two Future classes: returning the result of the callable object, or re-throwing the exception thrown when executing the callable object. But if the future does not end running, the behavior of the result method in the two Future classes is very different.from concurrent import futures from flags import save_flag, get_flag, show, main MAX_WORKERS = 20 def download_one(cc): image = get_flag(cc) show(cc) save_flag(image, cc.lower()+".gif") return cc def download_many(cc_list): cc_list = cc_list[:5] with futures.ThreadPoolExecutor(max_workers=3) as executor: to_do = [] for cc in sorted(cc_list): future = executor.submit(download_one,cc) to_do.append(future) msg = "Secheduled for {}:{}" print(msg.format(cc,future)) results = [] for future in futures.as_completed(to_do): res = future.result() msg = "{}result:{!r}" print(msg.format(future,res)) results.append(res) return len(results) if __name__ == '__main__': main(download_many)The result is as follows:
concurrent.futures starts the process
ProcessPoolExecutor class in concurrent.futures Distribute work to multiple Python processes, so if you need to do CPU-intensive processing, using this module can bypass the GIL and utilize all CPU cores. The principle is that a ProcessPoolExecutor creates N independent Python interpreters, where N is the number of CPU cores available on the system. The usage method is the same as the ThreadPoolExecutor methodThe above is the detailed content of Detailed example of how Python handles concurrency issues through futures. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Chinese version
Chinese version, very easy to use

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver Mac version
Visual web development tools
