Introduction to the implementation of cyclic redundancy check in Java
CRC check utility library In the field of data storage and data communication, in order to ensure the accuracy of data, error detection methods have to be used. The following article mainly introduces you to the cyclic redundancy check in Java ( Friends who need it can refer to the relevant information on the implementation of CRC32). Let’s take a look below.
Preface
This article mainly introduces to you the relevant content about Java's implementation of cyclic redundancy check (CRC32), and shares it with you. Reference study, not much to say below, let’s take a look at the detailed introduction.
Introduction to CRC32
CRC check utility library In the field of data storage and data communication, in order to ensure the accuracy of the data, it has to be used means of error detection. Among many error detection methods, CRC is the most famous one. The full name of CRC is cyclic redundancy check.
CRC32 has extremely strong error detection capabilities, low overhead, and is easy to implement with encoders and detection circuits. Judging from its error detection capabilities, the probability of errors it cannot detect is only less than 0.0047%. In terms of performance and cost, it is far superior to parity check and arithmetic sum check. Therefore, in the fields of data storage and data communication, CRC is everywhere: the FCS (Frame Error Detection Sequence) of the famous communication protocol X.25 uses CRC-CCITT, compression tool software such as ARJ and LHA use CRC32, and disk The drive uses CRC16 for reading and writing, and common image storage formats such as GIF and TIFF also use CRC as an error detection method.
CRC implementation
##
package com.jianggujin.codec; import java.io.IOException; import java.io.InputStream; import java.util.zip.CRC32; /** * CRC32 * * @author jianggujin * */ public class HQCRC32 { private static HQCRC32 crc32 = new HQCRC32(); public static HQCRC32 getInstance() { return crc32; } private HQCRC32() { } private static final int STREAM_BUFFER_LENGTH = 1024; public long encrypt(byte[] data) { CRC32 crc32 = new CRC32(); crc32.update(data); return crc32.getValue(); } public long encrypt(InputStream data) throws IOException { final byte[] buffer = new byte[STREAM_BUFFER_LENGTH]; int read = data.read(buffer, 0, STREAM_BUFFER_LENGTH); CRC32 crc32 = new CRC32(); while (read > -1) { crc32.update(buffer, 0, read); read = data.read(buffer, 0, STREAM_BUFFER_LENGTH); } return crc32.getValue(); } }
Test code:
import org.junit.Test; import com.jianggujin.codec.HQCRC32; public class CRC32Test { HQCRC32 crc32 = HQCRC32.getInstance(); @Test public void encode() { byte[] data = "jianggujin".getBytes(); long result = crc32.encrypt(data); System.err.println(result); } }
Test results:
Summary
The above is the detailed content of Introduction to the implementation of cyclic redundancy check in Java. For more information, please follow other related articles on the PHP Chinese website!

JVM'sperformanceiscompetitivewithotherruntimes,offeringabalanceofspeed,safety,andproductivity.1)JVMusesJITcompilationfordynamicoptimizations.2)C offersnativeperformancebutlacksJVM'ssafetyfeatures.3)Pythonisslowerbuteasiertouse.4)JavaScript'sJITisles

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),allowingcodetorunonanyplatformwithaJVM.1)Codeiscompiledintobytecode,notmachine-specificcode.2)BytecodeisinterpretedbytheJVM,enablingcross-platformexecution.3)Developersshouldtestacross

TheJVMisanabstractcomputingmachinecrucialforrunningJavaprogramsduetoitsplatform-independentarchitecture.Itincludes:1)ClassLoaderforloadingclasses,2)RuntimeDataAreafordatastorage,3)ExecutionEnginewithInterpreter,JITCompiler,andGarbageCollectorforbytec

JVMhasacloserelationshipwiththeOSasittranslatesJavabytecodeintomachine-specificinstructions,managesmemory,andhandlesgarbagecollection.ThisrelationshipallowsJavatorunonvariousOSenvironments,butitalsopresentschallengeslikedifferentJVMbehaviorsandOS-spe

Java implementation "write once, run everywhere" is compiled into bytecode and run on a Java virtual machine (JVM). 1) Write Java code and compile it into bytecode. 2) Bytecode runs on any platform with JVM installed. 3) Use Java native interface (JNI) to handle platform-specific functions. Despite challenges such as JVM consistency and the use of platform-specific libraries, WORA greatly improves development efficiency and deployment flexibility.

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),allowingcodetorunondifferentoperatingsystemswithoutmodification.TheJVMcompilesJavacodeintoplatform-independentbytecode,whichittheninterpretsandexecutesonthespecificOS,abstractingawayOS

Javaispowerfulduetoitsplatformindependence,object-orientednature,richstandardlibrary,performancecapabilities,andstrongsecurityfeatures.1)PlatformindependenceallowsapplicationstorunonanydevicesupportingJava.2)Object-orientedprogrammingpromotesmodulara

The top Java functions include: 1) object-oriented programming, supporting polymorphism, improving code flexibility and maintainability; 2) exception handling mechanism, improving code robustness through try-catch-finally blocks; 3) garbage collection, simplifying memory management; 4) generics, enhancing type safety; 5) ambda expressions and functional programming to make the code more concise and expressive; 6) rich standard libraries, providing optimized data structures and algorithms.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version
Chinese version, very easy to use

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
