Sometimes you need to use python to process binary data, for example, when accessing files and socket operations. At this time, you can use python's struct module to complete it. You can use struct to process structures in the C language.
The three most important functions in the struct module are pack(), unpack(), calcsize()
pack(fmt, v1, v2, ...) Follow the instructions given A given format (fmt), encapsulate the data into a string (actually a byte stream similar to a c structure)
unpack(fmt, string) Parse the bytes according to the given format (fmt) Stream string, return the parsed tuple
calcsize(fmt) Calculate how many bytes of memory the given format (fmt) occupies
The formats supported in the struct are as follows Table:
Format C Type Python Number of bytes
x pad byte no value 1
c char string of length 1 1
b signed char integer 1
B unsigned char integer 1
? _Bool bool 1
h short integer 2
H unsigned short integer 2
i int integer 4
I unsigned int integer or long 4
l long integer 4
L unsigned long long 4
q long long long 8
Q unsigned long long long 8
f float float 4
d double float 8
s char[] string 1
p char [] string 1
P void * long
Note 1.q and Q are only interesting when the machine supports 64-bit operations
Note 2. Each format can be preceded by A number, representing the number
Note 3. The s format represents a string of a certain length, 4s represents a string of length 4, but p represents a pascal string
Note 4. P is used to convert a pointer, its length is related to the machine word length
Note 5. The last one can be used to represent the pointer type, occupying 4 bytes
In order to be the same as the structure in c When exchanging data by body, you should also consider that some c or c++ compilers use byte alignment, which is usually a 32-bit system with 4 bytes as the unit. Therefore, the struct is converted according to the local machine byte order. You can use the byte order in the format. One character to change the alignment. The definition is as follows:
Character Byte order Size and alignment
@ native native Make up enough 4 bytes
= native standard Press the original word Number of sections
> big-endian standard based on the original number of bytes
! network (= big-endian)
standard Based on the original number of bytes
The method of use is to put it at the first position of fmt, just like '@5s6sif'
Example 1:
The structure is as follows:
struct Header { unsigned short id; char[4] tag; unsigned int version; unsigned int count; }
The above structure data is received through socket.recv, which is stored in the string s. Now it needs to be parsed out. You can use the unpack() function:
import struct id, tag, version, count = struct.unpack("!H4s2I", s)
In the above format string, ! means that we need to use network byte order for parsing, because our data is received from the network, and when it is transmitted over the network, it is in network byte order. The following H means An unsigned short id, 4s represents a 4-byte long string, and 2I represents two unsigned int type data.
Just pass an unpack, and now the id, tag, version, and count have been saved. Our information.
Similarly, it is also very convenient to pack local data into struct format:
ss = struct.pack("!H4s2I", id, tag, version, count);
The pack function converts id, tag, version, count according to the specified format Becoming a structure Header, ss is now a string (actually a byte stream similar to a c structure), and this string can be sent out through socket.send(ss).
Example 2:
import struct a=12.34 #将a变为二进制 bytes=struct.pack('i',a)
At this time bytes is a string string, and the string is the same as the binary storage content of a in bytes.
Then perform the reverse operation, and convert the existing binary data bytes (actually a string) into the python data type:
#Note that unpack returns a tuple! !
a,=struct.unpack('i',bytes)
If it is composed of multiple data, it can be like this:
a='hello' b='world!' c=2 d=45.123 bytes=struct.pack('5s6sif',a,b,c,d)
The bytes at this time are data in binary form, and can be written directly to a file such as binfile.write(bytes)
Then, when we need it, we can read it out, bytes=binfile.read()
and then decode it into a python variable through struct.unpack():
a,b,c,d=struct.unpack('5s6sif',bytes)
' 5s6sif' is called fmt, which is a formatted string, consisting of numbers and characters. 5s means a string of 5 characters, 2i means 2 integers, etc. The following are the available characters and types. ctype means that it can be used with python The types in have one-to-one correspondence.
Note: Problems encountered when processing binary files
When we process binary files, we need to use the following method:
binfile=open(filepath,'rb') #读二进制文件 binfile=open(filepath,'wb') #写二进制文件
Then binfile=open(filepath, What is the difference between the results of 'r')?
There are two differences:
First, if you encounter '0x1A' when using 'r', it will be regarded as the end of the file, which is EOF. Using 'rb' does not have this problem. That is, if you write in binary and read out in text, only part of the file will be read out if '0X1A' is present. When using 'rb', it will read to the end of the file.
Second, for the string x=’abc\ndef’, we can use len(x) to get its length to be 7. \n is called a newline character, which is actually ‘0X0A’. When we write in 'w', which is text mode, '0X0A' will be automatically changed into two characters '0X0D', '0X0A' on the Windows platform, that is, the file length actually becomes 8. When reading in 'r' text mode, it is automatically converted to the original newline character. If you change to 'wb' binary mode to write, one character will remain unchanged, and it will be read as it is when reading. So if you write in text mode and read in binary mode, you have to consider this extra byte. '0X0D' is also called the carriage return character. It will not change under Linux. Because linux only uses '0X0A' to represent line breaks.
The above is the detailed content of Introduction to the usage of pack and unpack in Python. For more information, please follow other related articles on the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software