


Preface
I believe many people are unfamiliar with xz compression, but xz is a compression tool that comes with most Linux by default. The xz format is smaller than 7z.
I recently encountered this compression format when downloading a source code package. I would like to take this opportunity to share the xz compression and decompression method.
Installation
If the system does not have the xz command, you need to install it. The installation method is very simple. Under centos, run directly:
yum install xz
You can also use the source package to install:
First download the tool source code package http://tukaani.org/xz/
After downloading, unzip and enter the directory to run configure to generate the makefile file and specify the installation directory with -prefix
./configure --prefix=/usr/local/xz
After completion, you will find that the makefile file is generated in the directory
make && sudo make install
The -s here indicates a soft connection
ln -s /usr/local/xz/bin/xz /bin/xz
xz –help will see the help information about the xz tool, indicating that the installation is successful
Create xz compressed file
xz -z 待压缩文件名
-k Keep the original file;
-0 to -9 adjust the compression ratio. If not set, the default compression level is 6;
Decompress the xz compressed file
xz -d 待解压文件
-k Keep the original file;
The file decompressed in this way is a packaged file in tar format , need to execute:
tar -xvf 待解包文件名
It should be noted that there is no parameter to directly decompress the xz compression format in the tar command (such as -f to decompress bzip2, -z to decompress gzip)
In fact, tar.xz The format of the compressed package is xz compression after going through the tar packaging folder (-f -z is because tar supports bzip2 and gzip format files by default to be compressed while packaging).
The above is the detailed content of How to decompress .tar.xz files under Linux. For more information, please follow other related articles on the PHP Chinese website!

The five core components of the Linux operating system are: 1. Kernel, 2. System libraries, 3. System tools, 4. System services, 5. File system. These components work together to ensure the stable and efficient operation of the system, and together form a powerful and flexible operating system.

The five core elements of Linux are: 1. Kernel, 2. Command line interface, 3. File system, 4. Package management, 5. Community and open source. Together, these elements define the nature and functionality of Linux.

Linux user management and security can be achieved through the following steps: 1. Create users and groups, using commands such as sudouseradd-m-gdevelopers-s/bin/bashjohn. 2. Bulkly create users and set password policies, using the for loop and chpasswd commands. 3. Check and fix common errors, home directory and shell settings. 4. Implement best practices such as strong cryptographic policies, regular audits and the principle of minimum authority. 5. Optimize performance, use sudo and adjust PAM module configuration. Through these methods, users can be effectively managed and system security can be improved.

The core operations of Linux file system and process management include file system management and process control. 1) File system operations include creating, deleting, copying and moving files or directories, using commands such as mkdir, rmdir, cp and mv. 2) Process management involves starting, monitoring and killing processes, using commands such as ./my_script.sh&, top and kill.

Shell scripts are powerful tools for automated execution of commands in Linux systems. 1) The shell script executes commands line by line through the interpreter to process variable substitution and conditional judgment. 2) The basic usage includes backup operations, such as using the tar command to back up the directory. 3) Advanced usage involves the use of functions and case statements to manage services. 4) Debugging skills include using set-x to enable debugging mode and set-e to exit when the command fails. 5) Performance optimization is recommended to avoid subshells, use arrays and optimization loops.

Linux is a Unix-based multi-user, multi-tasking operating system that emphasizes simplicity, modularity and openness. Its core functions include: file system: organized in a tree structure, supports multiple file systems such as ext4, XFS, Btrfs, and use df-T to view file system types. Process management: View the process through the ps command, manage the process using PID, involving priority settings and signal processing. Network configuration: Flexible setting of IP addresses and managing network services, and use sudoipaddradd to configure IP. These features are applied in real-life operations through basic commands and advanced script automation, improving efficiency and reducing errors.

The methods to enter Linux maintenance mode include: 1. Edit the GRUB configuration file, add "single" or "1" parameters and update the GRUB configuration; 2. Edit the startup parameters in the GRUB menu, add "single" or "1". Exit maintenance mode only requires restarting the system. With these steps, you can quickly enter maintenance mode when needed and exit safely, ensuring system stability and security.

The core components of Linux include kernel, shell, file system, process management and memory management. 1) Kernel management system resources, 2) shell provides user interaction interface, 3) file system supports multiple formats, 4) Process management is implemented through system calls such as fork, and 5) memory management uses virtual memory technology.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Zend Studio 13.0.1
Powerful PHP integrated development environment

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
