


Share an example of obtaining current stack information on Linux and Windows
The following editor will bring you an article on how to obtain the current stack information on Linux and Windows. The editor thinks it is quite good, so I will share it with you now and give it as a reference for everyone. Let’s follow the editor and take a look.
When writing stable and reliable software services, output stack information is often used so that users/developers can obtain accurate running information. Commonly used in log output, error reporting, and anomaly detection.
There is a relatively simple function to obtain stack information in Linux:
#include <stdio.h> #include <execinfo.h> #include <signal.h> #include <stdlib.h> #include <unistd.h> void handler(int sig) { void *array[5]; size_t size; // get void*'s for all entries on the stack size = backtrace(array, 5); // print out all the frames to stderr fprintf(stderr, "Error: signal %d:\n", sig); char** msgs = backtrace_symbols(array, size); for(int i=1;i<size && msgs[i];++i) printf("[%d] %s\n", i, msgs[i]); exit(1); } void baz() { int *foo = (int*)-1; // make a bad pointer printf("%d\n", *foo); // causes segfault } void bar() { baz(); } void foo() { bar(); } int main(int argc, char **argv) { signal(SIGSEGV, handler); // install our handler foo(); // this will call foo, bar, and baz. baz segfaults. }
The above code is from the reference Slightly modified from stackoverflow. The core are the two functions backtrace and backtrace_symbols.
It is recommended to use the open source code StackWalker under Windows, which supports X86, AMD64, and IA64.
If you need the simplest code, then the following is the code I extracted, which is obviously more complicated than Linux. (Many functions of Win are more complicated to implement, and of course there are many functions that are much simpler to implement than Linux.)
I will give some explanations later.
#include "stdafx.h" #include <Windows.h> #include <iostream> #include <DbgHelp.h> #include <TlHelp32.h> using namespace std; HANDLE ph; void baz() { int* v = 0; *v = 0; } void bar() { baz(); } void foo(){ try { bar(); } except(EXCEPTION_EXECUTE_HANDLER) { auto sire = SymInitialize(ph, 0, FALSE); sire = SymSetOptions(SymGetOptions() | SYMOPT_LOAD_LINES | SYMOPT_FAIL_CRITICAL_ERRORS); CONTEXT ctx = { 0 }; ctx.ContextFlags = CONTEXT_FULL; RtlCaptureContext(&ctx); STACKFRAME64 sf = { 0 }; #ifdef _M_IX86 // ignore IA64 auto imageType = IMAGE_FILE_MACHINE_I386; sf.AddrPC.Offset = ctx.Eip; sf.AddrPC.Mode = AddrModeFlat; sf.AddrFrame.Offset = ctx.Ebp; sf.AddrFrame.Mode = AddrModeFlat; sf.AddrStack.Offset = ctx.Esp; sf.AddrStack.Mode = AddrModeFlat; #elif _M_X64 auto imageType = IMAGE_FILE_MACHINE_AMD64; sf.AddrPC.Offset = ctx.Rip; sf.AddrPC.Mode = AddrModeFlat; sf.AddrFrame.Offset = ctx.Rsp; sf.AddrFrame.Mode = AddrModeFlat; sf.AddrStack.Offset = ctx.Rsp; sf.AddrStack.Mode = AddrModeFlat; #endif MODULEENTRY32 me; auto snap = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, GetCurrentProcessId()); auto info = Module32First(snap, &me); while (info) { auto dw = SymLoadModule64(ph, 0, me.szExePath, me.szModule, (DWORD64)me.modBaseAddr, me.modBaseSize); if (!Module32Next(snap, &me))break; } CloseHandle(snap); auto thread = GetCurrentThread(); PIMAGEHLP_SYMBOL64 sym = (IMAGEHLP_SYMBOL64 *)malloc(sizeof(IMAGEHLP_SYMBOL64) + 100); if (!sym) return; memset(sym, 0, sizeof(IMAGEHLP_SYMBOL64) + 100); sym->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64); sym->MaxNameLength = 100; IMAGEHLP_LINE64 line = { 0 }; line.SizeOfStruct = sizeof(line); for (;;) { auto result = StackWalk(imageType, ph, thread, &sf, &ctx, 0, SymFunctionTableAccess64, SymGetModuleBase64, 0); if (result) { DWORD64 offset = 0; DWORD offset_for_line = 0; CHAR und_fullname[100]; if (sf.AddrPC.Offset != 0) { if (SymGetSymFromAddr64(ph, sf.AddrPC.Offset, &offset, sym)) { UnDecorateSymbolName(sym->Name, und_fullname, 100, UNDNAME_COMPLETE); cout << und_fullname; } if (SymGetLineFromAddr64(ph, sf.AddrPC.Offset, &offset_for_line, &line)) { cout << " " << line.FileName << "(" << line.LineNumber << ")"; } cout << endl; } } else break; } SymCleanup(ph); } } int main() { ph = GetCurrentProcess(); foo(); return 0; }
Please link dbghelp.lib for compilation
The core is StackWalk and SymGetSymFromAddr64, SymGetLineFromAddr64.
StackWalk is used to get the next layer of stack.
SymGetSymFromAddr64 is used to get the current function name.
SymGetLineFromAddr64 is used to obtain the file and line number of the function.
In order for these three functions to work properly, it is necessary to initialize the symbol-related functions (SymInitialize), obtain the current thread description table (RtlCaptureContext), and load the used module (SymLoadModule64).
The two header files
After the above code is executed, stack information will be output on the console.
The above is the detailed content of Share an example of obtaining current stack information on Linux and Windows. For more information, please follow other related articles on the PHP Chinese website!

MaintenanceModeinLinuxisaspecialbootenvironmentforcriticalsystemmaintenancetasks.Itallowsadministratorstoperformtaskslikeresettingpasswords,repairingfilesystems,andrecoveringfrombootfailuresinaminimalenvironment.ToenterMaintenanceMode,interrupttheboo

The core components of Linux include kernel, file system, shell, user and kernel space, device drivers, and performance optimization and best practices. 1) The kernel is the core of the system, managing hardware, memory and processes. 2) The file system organizes data and supports multiple types such as ext4, Btrfs and XFS. 3) Shell is the command center for users to interact with the system and supports scripting. 4) Separate user space from kernel space to ensure system stability. 5) The device driver connects the hardware to the operating system. 6) Performance optimization includes tuning system configuration and following best practices.

The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.

Linux maintenance mode can be entered through the GRUB menu. The specific steps are: 1) Select the kernel in the GRUB menu and press 'e' to edit, 2) Add 'single' or '1' at the end of the 'linux' line, 3) Press Ctrl X to start. Maintenance mode provides a secure environment for tasks such as system repair, password reset and system upgrade.

The steps to enter Linux recovery mode are: 1. Restart the system and press the specific key to enter the GRUB menu; 2. Select the option with (recoverymode); 3. Select the operation in the recovery mode menu, such as fsck or root. Recovery mode allows you to start the system in single-user mode, perform file system checks and repairs, edit configuration files, and other operations to help solve system problems.

The core components of Linux include the kernel, file system, shell and common tools. 1. The kernel manages hardware resources and provides basic services. 2. The file system organizes and stores data. 3. Shell is the interface for users to interact with the system. 4. Common tools help complete daily tasks.

The basic structure of Linux includes the kernel, file system, and shell. 1) Kernel management hardware resources and use uname-r to view the version. 2) The EXT4 file system supports large files and logs and is created using mkfs.ext4. 3) Shell provides command line interaction such as Bash, and lists files using ls-l.

The key steps in Linux system management and maintenance include: 1) Master the basic knowledge, such as file system structure and user management; 2) Carry out system monitoring and resource management, use top, htop and other tools; 3) Use system logs to troubleshoot, use journalctl and other tools; 4) Write automated scripts and task scheduling, use cron tools; 5) implement security management and protection, configure firewalls through iptables; 6) Carry out performance optimization and best practices, adjust kernel parameters and develop good habits.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools