python-numpy
Writing and accessing csv files
Writing csv files
CSV (Comma-Separated Value, comma separated value), is a A common file format used to store bulk data.
Write csv file
np.savetxt(frame, array, fmt='%.18e', delimiter=None) • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件 • array : 存入文件的数组 • fmt : 写入文件的格式,例如:%d %.2f %.18e • delimiter : 分割字符串,默认是任何空格
Example:
>>> a = np.arange(100).reshape(5,20)>>> np.savetxt('a.csv',a,fmt='%d',delimiter=',')
The obtained file is like this
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99
Change the parameters to float Point writing
>>> a = np.arange(100).reshape(5,20)>>> np.savetxt('a.csv',a,fmt='%.1f',delimiter=',')
0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0 20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0 40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0 60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0 80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0
Read csv file
Read csv file
np.loadtxt(frame, dtype=np.float, delimiter=None, unpack=False) • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件 • dtype : 数据类型,可选 • delimiter : 分割字符串,默认是任何空格 • unpack : 如果True,读入属性将分别写入不同变量
Example:
>>> b = np.loadtxt('a.csv',delimiter=',')>>> b array([[ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], [ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.], [ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.], [ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.], [ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]])>>> b = np.loadtxt('a.csv',dtype=np.int,delimiter=',')>>> b array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,57, 58, 59], [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,77, 78, 79], [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,97, 98, 99]])
CSV can only effectively store one-dimensional and two-dimensional arrays
np.savetxt() np.loadtxt() can only effectively access one-dimensional and two-dimensional arrays
Access to multi-dimensional data
Writing of multidimensional data
a.tofile(frame, sep='', format='%s') • frame : 文件、字符串 • sep : 数据分割字符串,如果是空串,写入文件为二进制 • format : 写入数据的格式
Example;
>>> a = np.arange(100).reshape(5,10,2)>>> a.tofile("a.dat",sep=',',format='%d')
Contents of a.dat:
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99
If the delimiter is not specified, then The resulting binary file cannot be read with a text editor.
Reading of multidimensional data
np.fromfile(frame, dtype=float, count=‐1, sep='') • frame : 文件、字符串 • dtype : 读取的数据类型 • count : 读入元素个数,‐1表示读入整个文件 • sep : 数据分割字符串,如果是空串,写入文件为二进制
numpy’s random number function
NumPy’s random sublibrary
np.random.*
Function | Description |
---|---|
rand(d0,d1,...,dn) | Create a random number array based on d0-dn, floating point number, [0,1), uniform distribution |
randn(d0,d1,...,dn) | Create a random number array based on d0-dn, standard normal distribution |
randint(low[,high,shape]) | Create a random integer or integer array based on shape , the range is [low,high) |
seed(s) | random number seed, s is the given seed value |
shuffle(a) | Permute according to the first axis of array a, change array a |
permutation(a) | According to the array The first axis of a generates a new out-of-order array without changing the array a |
from the one-dimensional array Elements are extracted from a with probability p to form a new array of size shape. replace indicates whether it is possible to reuse elements. The default is False | |
generated Array with uniform distribution, low starting value, high ending value, size is of shape | |
Produces a normal distribution Array, loc is the mean, scale standard deviation, size is the shape | |
generates an array with Poisson distribution, lam is the occurrence of random events Rate, size is the shape |
NumPy directly provides statistical function
np.*Description | |
---|---|
According to the given Calculate the sum of related elements of array a with a given axis, axis integer or tuple | |
Calculate the related elements of array a with a given axis Expectation, axis integer or tuple | ##average(a,axis=None,weights=None) |
std(a,axis=None) | |
var(a,axis = None) | |
min(a) max(a) | |
argmin(a) argmax(a) | |
unravel_index(index,shape) | |
ptp(a) | |
median(a) | |
Gradient: the rate of change between consecutive values, that is, the slope |
>>> a = np.random.randint(0,20,5)>>> np.gradient(a) array([ 9. , -0.5, -2. , -3. , -12. ])
The above is the detailed content of python numpy library. For more information, please follow other related articles on the PHP Chinese website!

Create multi-dimensional arrays with NumPy can be achieved through the following steps: 1) Use the numpy.array() function to create an array, such as np.array([[1,2,3],[4,5,6]]) to create a 2D array; 2) Use np.zeros(), np.ones(), np.random.random() and other functions to create an array filled with specific values; 3) Understand the shape and size properties of the array to ensure that the length of the sub-array is consistent and avoid errors; 4) Use the np.reshape() function to change the shape of the array; 5) Pay attention to memory usage to ensure that the code is clear and efficient.

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

ForPythondatastorage,chooselistsforflexibilitywithmixeddatatypes,array.arrayformemory-efficienthomogeneousnumericaldata,andNumPyarraysforadvancednumericalcomputing.Listsareversatilebutlessefficientforlargenumericaldatasets;array.arrayoffersamiddlegro

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

ToaccesselementsinaPythonarray,useindexing:my_array[2]accessesthethirdelement,returning3.Pythonuseszero-basedindexing.1)Usepositiveandnegativeindexing:my_list[0]forthefirstelement,my_list[-1]forthelast.2)Useslicingforarange:my_list[1:5]extractselemen

Article discusses impossibility of tuple comprehension in Python due to syntax ambiguity. Alternatives like using tuple() with generator expressions are suggested for creating tuples efficiently.(159 characters)

The article explains modules and packages in Python, their differences, and usage. Modules are single files, while packages are directories with an __init__.py file, organizing related modules hierarchically.

Article discusses docstrings in Python, their usage, and benefits. Main issue: importance of docstrings for code documentation and accessibility.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Chinese version
Chinese version, very easy to use

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
