Home >Backend Development >Python Tutorial >pandas basics
pandas is a data analysis package built based on Numpy that contains more advanced data structures and tools
Similar to Numpy, whose core is ndarray, pandas also revolves around the two core data structures of Series and DataFrame. Series and DataFrame correspond to one-dimensional sequence and two-dimensional table structure respectively. The conventional import method of pandas is as follows:
from pandas import Series,DataFrame import pandas as pd
Series can be regarded as a fixed-length ordered dictionary. Basically any one-dimensional data can be used to construct Series objects:
>>> s = Series([1,2,3.0,'abc']) >>> s 0 1 1 2 2 3 3 abc dtype: object
Although dtype:object
can contain a variety of basic data types, it always feels like it will affect performance. It is best Or keep it simple dtype.
The Series object contains two main attributes: index and values, which are the left and right columns in the above example. Because what is passed to the constructor is a list, the value of index is an integer that increases from 0. If a dictionary-like key-value pair structure is passed in, a Series corresponding to index-value will be generated; or in the initialization When using keyword parameters to explicitly specify an index object:
>>> s = Series(data=[1,3,5,7],index = ['a','b','x','y']) >>> s a 1 b 3 x 5 y 7 dtype: int64 >>> s.index Index(['a', 'b', 'x', 'y'], dtype='object') >>> s.values array([1, 3, 5, 7], dtype=int64)
The elements of the Series object will be constructed strictly according to the given index, which means: if the data parameter has a key-value pair, then only the elements in the index The key contained will be used; and if the corresponding key is missing from data, the key will be added even if a NaN value is given.
Note that although there is a correspondence between the index of Series and the elements of values, this is different from the mapping of dictionary. Index and values are actually still independent ndarray arrays, so the performance of Series objects is completely ok.
Series The biggest advantage of this data structure using key-value pairs is that the index will be automatically aligned when arithmetic operations are performed between Series.
In addition, the Series object and its index both contain a name
attribute:
>>> s.name = 'a_series' >>> s.index.name = 'the_index' >>> s the_index a 1 b 3 x 5 y 7 Name: a_series, dtype: int64
DataFrame It is a tabular data structure that contains a set of ordered columns (similar to index), and each column can be of a different value type (unlike ndarray, which can only have one dtype). Basically, you can think of a DataFrame as a collection of Series that share the same index.
The construction method of DataFrame is similar to Series, except that it can accept multiple one-dimensional data sources at the same time, and each one will become a separate column:
>>> data = {'state':['Ohino','Ohino','Ohino','Nevada','Nevada'], 'year':[2000,2001,2002,2001,2002], 'pop':[1.5,1.7,3.6,2.4,2.9]} >>> df = DataFrame(data) >>> df pop state year 0 1.5 Ohino 2000 1 1.7 Ohino 2001 2 3.6 Ohino 2002 3 2.4 Nevada 2001 4 2.9 Nevada 2002 [5 rows x 3 columns]
Although the parameter data looks like a dictionary, The keys of the dictionary do not play the role of the index of the DataFrame, but the "name" attribute of the Series. The index generated here is still "01234".
The more complete DataFrame constructor parameters are: DataFrame(data=None,index=None,coloumns=None)
, columns is "name":
>>> df = DataFrame(data,index=['one','two','three','four','five'], columns=['year','state','pop','debt']) >>> df year state pop debt one 2000 Ohino 1.5 NaN two 2001 Ohino 1.7 NaN three 2002 Ohino 3.6 NaN four 2001 Nevada 2.4 NaN five 2002 Nevada 2.9 NaN [5 rows x 4 columns]
Similarly Missing values are filled with NaN. Take a look at index, columns and index types:
>>> df.index Index(['one', 'two', 'three', 'four', 'five'], dtype='object') >>> df.columns Index(['year', 'state', 'pop', 'debt'], dtype='object') >>> type(df['debt']) <class 'pandas.core.series.Series'>
DataFrame row-oriented and column-oriented operations are basically balanced, and any column extracted is a Series.
Series objects are reindexed through their .reindex(index=None,**kwargs)
method accomplish. There are two commonly used parameters in **kwargs
: method=None,fill_value=np.NaN
:
ser = Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c']) >>> a = ['a','b','c','d','e'] >>> ser.reindex(a) a -5.3 b 7.2 c 3.6 d 4.5 e NaN dtype: float64 >>> ser.reindex(a,fill_value=0) a -5.3 b 7.2 c 3.6 d 4.5 e 0.0 dtype: float64 >>> ser.reindex(a,method='ffill') a -5.3 b 7.2 c 3.6 d 4.5 e 4.5 dtype: float64 >>> ser.reindex(a,fill_value=0,method='ffill') a -5.3 b 7.2 c 3.6 d 4.5 e 4.5 dtype: float64
.reindex()
method A new object will be returned, its index strictly follows the given parameters, method:{'backfill', 'bfill', 'pad', 'ffill', None}
Parameters are used to specify interpolation (filling) Method, when not given, automatically fills with fill_value
, the default is NaN (ffill = pad, bfill = back fill, respectively refers to the forward or backward value during interpolation)
The reindexing method of the DataFrame object is: .reindex(index=None,columns=None,**kwargs)
. There is only one more optional columns parameter than Series, which is used to index the columns. The usage is similar to the above example, except that the interpolation method method
parameter can only be applied to rows, that is, axis 0.
>>> state = ['Texas','Utha','California'] >>> df.reindex(columns=state,method='ffill') Texas Utha California a 1 NaN 2 c 4 NaN 5 d 7 NaN 8 [3 rows x 3 columns] >>> df.reindex(index=['a','b','c','d'],columns=state,method='ffill') Texas Utha California a 1 NaN 2 b 1 NaN 2 c 4 NaN 5 d 7 NaN 8 [4 rows x 3 columns]
But fill_value
is still valid. Smart friends may have already thought about it, can we implement interpolation on columns through df.T.reindex(index,method='**').T
? The answer is yes. of. Also note that when using reindex(index,method='**')
, index must be monotonic, otherwise it will trigger a ValueError: Must be monotonic for forward fill
, for example, the last call in the above example will not work if index=['a','b','d','c']
is used.
means deleting an element of the Series or a certain row (column) of the DataFrame, through the object's .drop(labels, axis=0)
Method:
>>> ser d 4.5 b 7.2 a -5.3 c 3.6 dtype: float64 >>> df Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> ser.drop('c') d 4.5 b 7.2 a -5.3 dtype: float64 >>> df.drop('a') Ohio Texas California c 3 4 5 d 6 7 8 [2 rows x 3 columns] >>> df.drop(['Ohio','Texas'],axis=1) California a 2 c 5 d 8 [3 rows x 1 columns]
.drop()
Returns a new object, and the meta object will not be changed.
Like Numpy, pandas also supports indexing and slicing through obj[::]
, as well as filtering through boolean arrays.
However, it should be noted that because the index of the pandas object is not limited to integers, when using a non-integer as the slice index, it is included at the end.
>>> foo a 4.5 b 7.2 c -5.3 d 3.6 dtype: float64 >>> bar 0 4.5 1 7.2 2 -5.3 3 3.6 dtype: float64 >>> foo[:2] a 4.5 b 7.2 dtype: float64 >>> bar[:2] 0 4.5 1 7.2 dtype: float64 >>> foo[:'c'] a 4.5 b 7.2 c -5.3 dtype: float64
这里 foo 和 bar 只有 index 不同——bar 的 index 是整数序列。可见当使用整数索引切片时,结果与 Python 列表或 Numpy 的默认状况相同;换成 'c'
这样的字符串索引时,结果就包含了这个边界元素。
另外一个特别之处在于 DataFrame 对象的索引方式,因为他有两个轴向(双重索引)。
可以这么理解:DataFrame 对象的标准切片语法为:.ix[::,::]
。ix 对象可以接受两套切片,分别为行(axis=0)和列(axis=1)的方向:
>>> df Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> df.ix[:2,:2] Ohio Texas a 0 1 c 3 4 [2 rows x 2 columns] >>> df.ix['a','Ohio'] 0
而不使用 ix ,直接切的情况就特殊了:
索引时,选取的是列
切片时,选取的是行
这看起来有点不合逻辑,但作者解释说 “这种语法设定来源于实践”,我们信他。
>>> df['Ohio'] a 0 c 3 d 6 Name: Ohio, dtype: int32 >>> df[:'c'] Ohio Texas California a 0 1 2 c 3 4 5 [2 rows x 3 columns] >>> df[:2] Ohio Texas California a 0 1 2 c 3 4 5 [2 rows x 3 columns]
使用布尔型数组的情况,注意行与列的不同切法(列切法的 :
不能省):
>>> df['Texas']>=4 a False c True d True Name: Texas, dtype: bool >>> df[df['Texas']>=4] Ohio Texas California c 3 4 5 d 6 7 8 [2 rows x 3 columns] >>> df.ix[:,df.ix['c']>=4] Texas California a 1 2 c 4 5 d 7 8 [3 rows x 2 columns]
pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,结果的索引取索引对的并集。自动的数据对齐在不重叠的索引处引入空值,默认为 NaN。
>>> foo = Series({'a':1,'b':2}) >>> foo a 1 b 2 dtype: int64 >>> bar = Series({'b':3,'d':4}) >>> bar b 3 d 4 dtype: int64 >>> foo + bar a NaN b 5 d NaN dtype: float64
DataFrame 的对齐操作会同时发生在行和列上。
当不希望在运算结果中出现 NA 值时,可以使用前面 reindex 中提到过 fill_value
参数,不过为了传递这个参数,就需要使用对象的方法,而不是操作符:df1.add(df2,fill_value=0)
。其他算术方法还有:sub(), div(), mul()
。
Series 和 DataFrame 之间的算术运算涉及广播,暂时先不讲。
Numpy 的 ufuncs(元素级数组方法)也可用于操作 pandas 对象。
当希望将函数应用到 DataFrame 对象的某一行或列时,可以使用 .apply(func, axis=0, args=(), **kwds)
方法。
f = lambda x:x.max()-x.min() >>> df Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> df.apply(f) Ohio 6 Texas 6 California 6 dtype: int64 >>> df.apply(f,axis=1) a 2 c 2 d 2 dtype: int64
Series 的 sort_index(ascending=True)
方法可以对 index 进行排序操作,ascending 参数用于控制升序或降序,默认为升序。
若要按值对 Series 进行排序,当使用 .order()
方法,任何缺失值默认都会被放到 Series 的末尾。
在 DataFrame 上,.sort_index(axis=0, by=None, ascending=True)
方法多了一个轴向的选择参数与一个 by 参数,by 参数的作用是针对某一(些)列进行排序(不能对行使用 by 参数):
>>> df.sort_index(by='Ohio') Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> df.sort_index(by=['California','Texas']) Ohio Texas California a 0 1 2 c 3 4 5 d 6 7 8 [3 rows x 3 columns] >>> df.sort_index(axis=1) California Ohio Texas a 2 0 1 c 5 3 4 d 8 6 7 [3 rows x 3 columns]
排名(Series.rank(method='average', ascending=True)
)的作用与排序的不同之处在于,他会把对象的 values 替换成名次(从 1 到 n)。这时唯一的问题在于如何处理平级项,方法里的 method
参数就是起这个作用的,他有四个值可选:average, min, max, first
。
>>> ser=Series([3,2,0,3],index=list('abcd')) >>> ser a 3 b 2 c 0 d 3 dtype: int64 >>> ser.rank() a 3.5 b 2.0 c 1.0 d 3.5 dtype: float64 >>> ser.rank(method='min') a 3 b 2 c 1 d 3 dtype: float64 >>> ser.rank(method='max') a 4 b 2 c 1 d 4 dtype: float64 >>> ser.rank(method='first') a 3 b 2 c 1 d 4 dtype: float64
注意在 ser[0]=ser[3] 这对平级项上,不同 method 参数表现出的不同名次。
DataFrame 的 .rank(axis=0, method='average', ascending=True)
方法多了个 axis 参数,可选择按行或列分别进行排名,暂时好像没有针对全部元素的排名方法。
pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。
比如 DataFrame.mean(axis=0,skipna=True)
方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False
来禁用此功能:
>>> df one two a 1.40 NaN b 7.10 -4.5 c NaN NaN d 0.75 -1.3 [4 rows x 2 columns] >>> df.mean() one 3.083333 two -2.900000 dtype: float64 >>> df.mean(axis=1) a 1.400 b 1.300 c NaN d -0.275 dtype: float64 >>> df.mean(axis=1,skipna=False) a NaN b 1.300 c NaN d -0.275 dtype: float64
其他常用的统计方法有:
##******** ************************************ | |
count | Number of non-NA values |
describe | Compute summary statistics for columns of Series or DF |
##min , max | Minimum and maximum values |
Index position of the minimum and maximum values (integer) | |
Index values of the minimum and maximum values | |
Sample quantile (0 to 1 ) | |
Sum | |
mean | |
Median | |
Calculate the average absolute dispersion based on the mean | |
Variance | |
Standard Deviation | |
Skewness of sample values (third moment) | |
Kurtosis of sample values (fourth moment) | |
Cumulative sum of sample values | |
Cumulative maximum value and cumulative minimum value of sample values | |
Cumulative product of sample values | |
Calculate the first difference (useful for time series) |
Calculate percent change
The main expression of NA in pandas is np.nan. In addition, Python's built-in None will also be treated as NA.
.
This pair of methods performs element-level applications on the object, and then returns a Boolean array, which can generally be used for Boolean indexing.
dropnaFor a Series, dropna returns a Series containing only non-null data and index values.
. The optional value of the how parameter is any or all. all discards the row (column) only if all slice elements are NA. Another interesting parameter is thresh, which is of type integer. Its function is that, for example, thresh=3, it will be retained when there are at least 3 non-NA values in a row. fillna
inplace parameter
The above is the detailed content of pandas basics. For more information, please follow other related articles on the PHP Chinese website!