RSAsecurity.java
package com.mstf.rsa; import java.security.KeyFactory; import java.security.KeyPair; import java.security.KeyPairGenerator; import java.security.PrivateKey; import java.security.PublicKey; import java.security.interfaces.RSAPrivateKey; import java.security.interfaces.RSAPublicKey; import java.security.spec.PKCS8EncodedKeySpec; import java.security.spec.X509EncodedKeySpec; import javax.crypto.Cipher; import com.sun.org.apache.xerces.internal.impl.dv.util.Base64; /*RSA 工具类。提供加密,解密,生成密钥对等方法。 RSA加密原理概述 RSA的安全性依赖于大数的分解,公钥和私钥都是两个大素数(大于100的十进制位)的函数。 据猜测,从一个密钥和密文推断出明文的难度等同于分解两个大素数的积 密钥的产生: 1.选择两个大素数 p,q ,计算 n=p*q; 2.随机选择加密密钥 e ,要求 e 和 (p-1)*(q-1)互质 3.利用 Euclid 算法计算解密密钥 d , 使其满足 e*d = 1(mod(p-1)*(q-1)) (其中 n,d 也要互质) 4:至此得出公钥为 (n,e) 私钥为 (n,d) RSA速度 * 由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论 是软件还是硬件实现。 * 速度一直是RSA的缺陷。一般来说只用于少量数据 加密。*/ public class RSAsecurity { public static String src = "admin"; public void priENpubDE() { try { // 初始化秘钥 KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA"); // 秘钥长度 keyPairGenerator.initialize(1024); // 初始化秘钥对 KeyPair keyPair = keyPairGenerator.generateKeyPair(); // 公钥 RSAPublicKey rsaPublicKey = (RSAPublicKey) keyPair.getPublic(); // 私钥 RSAPrivateKey rsaPrivateKey = (RSAPrivateKey) keyPair.getPrivate(); // 2.私钥加密,公钥解密----加密 // 生成私钥 PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new PKCS8EncodedKeySpec(rsaPrivateKey.getEncoded()); KeyFactory keyFactory = KeyFactory.getInstance("RSA"); PrivateKey privateKey = keyFactory.generatePrivate(pkcs8EncodedKeySpec); // Cipher类为加密和解密提供密码功能,通过getinstance实例化对象 Cipher cipher = Cipher.getInstance("RSA"); // 初始化加密 cipher.init(Cipher.ENCRYPT_MODE, privateKey); byte[] result = cipher.doFinal(src.getBytes()); System.out.println("私钥加密,公钥解密----加密:" + Base64.encode(result)); // 3.私钥加密,公钥解密----解密 // 生成公钥 X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(rsaPublicKey.getEncoded()); keyFactory = KeyFactory.getInstance("RSA"); PublicKey publicKey = keyFactory.generatePublic(x509EncodedKeySpec); cipher = Cipher.getInstance("RSA"); // 初始化解密 cipher.init(Cipher.DECRYPT_MODE, publicKey); result = cipher.doFinal(result); System.out.println("私钥加密,公钥解密----解密:" + new String(result)); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } } public void pubENpriDE() { try { // 1.初始化秘钥 KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA"); // 秘钥长度 keyPairGenerator.initialize(512); // 初始化秘钥对 KeyPair keyPair = keyPairGenerator.generateKeyPair(); // 公钥 RSAPublicKey rsaPublicKey = (RSAPublicKey) keyPair.getPublic(); // 私钥 RSAPrivateKey rsaPrivateKey = (RSAPrivateKey) keyPair.getPrivate(); // 2.公钥加密,私钥解密----加密 X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(rsaPublicKey.getEncoded()); KeyFactory keyFactory = KeyFactory.getInstance("RSA"); PublicKey publicKey = keyFactory.generatePublic(x509EncodedKeySpec); // 初始化加密 // Cipher类为加密和解密提供密码功能,通过getinstance实例化对象 Cipher cipher = Cipher.getInstance("RSA"); cipher.init(Cipher.ENCRYPT_MODE, publicKey); // 加密字符串 byte[] result = cipher.doFinal(src.getBytes()); System.out.println("公钥加密,私钥解密----加密:" + Base64.encode(result)); // 3.公钥加密,私钥解密-----解密 PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new PKCS8EncodedKeySpec(rsaPrivateKey.getEncoded()); keyFactory = KeyFactory.getInstance("RSA"); PrivateKey privateKey = keyFactory.generatePrivate(pkcs8EncodedKeySpec); // 初始化解密 cipher.init(Cipher.DECRYPT_MODE, privateKey); // 解密字符串 result = cipher.doFinal(result); System.out.println("公钥加密,私钥解密-----解密:" + new String(result)); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } } }
RSAtest.java
package com.mstf.rsa; import com.mstf.rsa.RSAsecurity; public class RSAtest { public static void main(String[] args) { RSAsecurity rsAsecurity = new RSAsecurity(); System.out.println("私钥加密公钥解密例:"); rsAsecurity.priENpubDE(); System.out.println("公钥加密私钥解密例:"); rsAsecurity.pubENpriDE(); } }
The above is the detailed content of Example introduction of RSA encryption and decryption. For more information, please follow other related articles on the PHP Chinese website!

Java is widely used in enterprise-level applications because of its platform independence. 1) Platform independence is implemented through Java virtual machine (JVM), so that the code can run on any platform that supports Java. 2) It simplifies cross-platform deployment and development processes, providing greater flexibility and scalability. 3) However, it is necessary to pay attention to performance differences and third-party library compatibility and adopt best practices such as using pure Java code and cross-platform testing.

JavaplaysasignificantroleinIoTduetoitsplatformindependence.1)Itallowscodetobewrittenonceandrunonvariousdevices.2)Java'secosystemprovidesusefullibrariesforIoT.3)ItssecurityfeaturesenhanceIoTsystemsafety.However,developersmustaddressmemoryandstartuptim

ThesolutiontohandlefilepathsacrossWindowsandLinuxinJavaistousePaths.get()fromthejava.nio.filepackage.1)UsePaths.get()withSystem.getProperty("user.dir")andtherelativepathtoconstructthefilepath.2)ConverttheresultingPathobjecttoaFileobjectifne

Java'splatformindependenceissignificantbecauseitallowsdeveloperstowritecodeonceandrunitonanyplatformwithaJVM.This"writeonce,runanywhere"(WORA)approachoffers:1)Cross-platformcompatibility,enablingdeploymentacrossdifferentOSwithoutissues;2)Re

Java is suitable for developing cross-server web applications. 1) Java's "write once, run everywhere" philosophy makes its code run on any platform that supports JVM. 2) Java has a rich ecosystem, including tools such as Spring and Hibernate, to simplify the development process. 3) Java performs excellently in performance and security, providing efficient memory management and strong security guarantees.

JVM implements the WORA features of Java through bytecode interpretation, platform-independent APIs and dynamic class loading: 1. Bytecode is interpreted as machine code to ensure cross-platform operation; 2. Standard API abstract operating system differences; 3. Classes are loaded dynamically at runtime to ensure consistency.

The latest version of Java effectively solves platform-specific problems through JVM optimization, standard library improvements and third-party library support. 1) JVM optimization, such as Java11's ZGC improves garbage collection performance. 2) Standard library improvements, such as Java9's module system reducing platform-related problems. 3) Third-party libraries provide platform-optimized versions, such as OpenCV.

The JVM's bytecode verification process includes four key steps: 1) Check whether the class file format complies with the specifications, 2) Verify the validity and correctness of the bytecode instructions, 3) Perform data flow analysis to ensure type safety, and 4) Balancing the thoroughness and performance of verification. Through these steps, the JVM ensures that only secure, correct bytecode is executed, thereby protecting the integrity and security of the program.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor
