In programming, duck typing (English: duck typing) is a style of dynamic typing. In this style, the effective semantics of an object are determined not by inheriting from a specific class or implementing a specific interface, but by the current set of methods and properties. The name of this concept comes from the duck test proposed by James Whitcomb Riley. The "duck test" can be expressed like this: "When you see a bird that walks like a duck, swims like a duck, and quacks like a duck, then this bird It can be called a duck." In duck typing, the focus is not on the type of the object itself, but on how it is used. For example, in a language that doesn't use duck typing, we could write a function that takes an object of type duck and calls its walk and bark methods. In a language that uses duck typing, such a function can accept an object of any type and call its walk and call methods. If the methods that need to be called do not exist, a runtime error will be raised. The fact that any object with the correct walk and call methods can be accepted by a function leads to the above statement, hence the name of this way of determining types. Duck typing is usually
1. Detailed explanation of duck typing duck typing programming and Python implementation
Introduction: This article mainly introduces the detailed explanation of duck typing duck typing programming and Python implementation examples. Duck typing specifically refers to a programming style in interpreted languages. Friends who need it can refer to it. Next
2. Introducing Python’s duck typing in detail
##Introduction: I believe that Python developers are familiar with Python's duck typing. The accurate definition of duck typing in Wikipedia is 'a style of dynamic typing. In this style, the effective semantics of an object are not determined by inheriting from a specific class or implementing a specific interface, but by the "current set of methods and properties". So this article gives you the duck typing of Python.
3. Should a Pythonic class check parameter validity in __init__?
#Introduction: I know that according to the duck typing principle, parameter types should not be checked. But should parameters be checked for validity in other ways? For example: class Comment(object):... def __init__(self, content, creater, ipaddress):... ... self.content = content... ... self.creater = creater... .. .self.ipaddre
The above is the detailed content of Detailed explanation of duck typing in Python. For more information, please follow other related articles on the PHP Chinese website!

Create multi-dimensional arrays with NumPy can be achieved through the following steps: 1) Use the numpy.array() function to create an array, such as np.array([[1,2,3],[4,5,6]]) to create a 2D array; 2) Use np.zeros(), np.ones(), np.random.random() and other functions to create an array filled with specific values; 3) Understand the shape and size properties of the array to ensure that the length of the sub-array is consistent and avoid errors; 4) Use the np.reshape() function to change the shape of the array; 5) Pay attention to memory usage to ensure that the code is clear and efficient.

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

ForPythondatastorage,chooselistsforflexibilitywithmixeddatatypes,array.arrayformemory-efficienthomogeneousnumericaldata,andNumPyarraysforadvancednumericalcomputing.Listsareversatilebutlessefficientforlargenumericaldatasets;array.arrayoffersamiddlegro

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

ToaccesselementsinaPythonarray,useindexing:my_array[2]accessesthethirdelement,returning3.Pythonuseszero-basedindexing.1)Usepositiveandnegativeindexing:my_list[0]forthefirstelement,my_list[-1]forthelast.2)Useslicingforarange:my_list[1:5]extractselemen

Article discusses impossibility of tuple comprehension in Python due to syntax ambiguity. Alternatives like using tuple() with generator expressions are suggested for creating tuples efficiently.(159 characters)

The article explains modules and packages in Python, their differences, and usage. Modules are single files, while packages are directories with an __init__.py file, organizing related modules hierarchically.

Article discusses docstrings in Python, their usage, and benefits. Main issue: importance of docstrings for code documentation and accessibility.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor

Dreamweaver Mac version
Visual web development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
