


Detailed introduction to sparse storage and conversion of Python sparse matrices
This article mainly introduces Python sparse matrix-sparse storage and conversion related information, friends in need can refer to
sparse matrix-sparsep
from scipy import sparse
The storage form of sparse matrices
In the fields of science and engineering, many large matrices often appear when solving linear models. Part of the elements are all 0, which is called a sparse matrix. Using NumPy's ndarray array to save such a matrix will waste a lot of memory. Due to the sparse nature of the matrix, you can save memory usage by only saving relevant information about non-zero elements. In addition, writing operationfunctions for matrices with this special structure can also improve the operation speed of the matrix.
scipy.sparse library provides a variety of formats for representing sparse matrices, each format has different uses, among which dok_matrix and lil_matrix are suitable for gradually adding elements.
dok_matrix inherits from dict, which uses a dictionary to save the elements that are not 0 in the matrix: the key of the dictionary is a tuple that saves the element (row, column) information, and its corresponding value is the element value located in (row, column) in the matrix. Obviously, the sparse matrix in dictionary format is very suitable for the addition, deletion and access operations of single elements. Usually used to gradually add non-zero elements, and then convert to other formats that support fast operations.
a = sparse.dok_matrix((10, 5)) a[2:5, 3] = 1.0, 2.0, 3.0 print a.keys() print a.values()
[(2, 3), (3, 3), (4, 3)] [1.0, 2.0, 3.0]
lil_matrix uses two lists to store non-zero elements. data stores the non-zero elements in each row, and rows stores the columns in which the non-zero elements are located. This format is also great for adding elements one at a time and getting row-related data quickly.
b = sparse.lil_matrix((10, 5)) b[2, 3] = 1.0 b[3, 4] = 2.0 b[3, 2] = 3.0 print b.data print b.rows
[[] [] [1.0] [3.0, 2.0] [] [] [] [] [] []] [[] [] [3] [2, 4] [] [] [] [] [] []]
coo_matrix uses three arrays row, col and data to store the information of non-zero elements. The three arrays have the same length, row holds the row of elements, col holds the column of elements, and data holds the value of the element. coo_matrix does not support the access, addition and deletion of elements. Once created, it is almost impossible to perform any operations or matrix operations on it except converting it into a matrix in other formats.
coo_matrix supports repeated elements, that is, the same row and column coordinates can appear multiple times. When converted to a matrix in other formats, multiple values corresponding to the same row and row coordinates will be summed. In the example below, (2, 3) corresponds to two values: 1 and 10. When converting it to an ndarray array, these two values are added together, so the value at the coordinates of (2, 3) in the final matrix is 11 .
Many sparse matrix data are saved in files in this format. For example, a CSV file may have three columns: "User ID, Product ID, Evaluation Value". After reading the data using numpy.loadtxt or pandas.read_csv, it can be quickly converted into a sparse matrix through coo_matrix: each row of the matrix corresponds to a user, each column corresponds to a product, and the element value is the user's evaluation of the product. .
row = [2, 3, 3, 2] col = [3, 4, 2, 3] data = [1, 2, 3, 10] c = sparse.coo_matrix((data, (row, col)), shape=(5, 6)) print c.col, c.row, c.data print c.toarray()
[3 4 2 3] [2 3 3 2] [ 1 2 3 10] [[ 0 0 0 0 0 0] [ 0 0 0 0 0 0] [ 0 0 0 11 0 0] [ 0 0 3 0 2 0] [ 0 0 0 0 0 0]]
In personal operation, coo_matrix was chosen because it involves sparse matrix operations, but if it is not stored in other forms, the complexity is too high (time and space). A matrix of 1000*1000 will take about 2 hours, which is also fatal. I had no choice but to think of the data input format triples in the Pajek software:
So I thought of processing my own data into similar triples!
That is, "matrix matrix"—>"tuple triple"—>"sparseMatrix2tuple"—>"scipy.sparse"
The above is the detailed content of Detailed introduction to sparse storage and conversion of Python sparse matrices. For more information, please follow other related articles on the PHP Chinese website!

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

Python is suitable for rapid development and data processing, while C is suitable for high performance and underlying control. 1) Python is easy to use, with concise syntax, and is suitable for data science and web development. 2) C has high performance and accurate control, and is often used in gaming and system programming.

The time required to learn Python varies from person to person, mainly influenced by previous programming experience, learning motivation, learning resources and methods, and learning rhythm. Set realistic learning goals and learn best through practical projects.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version
Visual web development tools

Dreamweaver CS6
Visual web development tools