search
HomeJavajavaTutorialAnalyze the internal mechanism principles of common collections in JAVA

Everyone is familiar with commonly used collections, but they may only have a little understanding of the internal principles. The following is understood by reading the source code.

ArrayList

ArrayList internally is a dynamic object array container with a default size of 10. Whenever a new data is added, if it is larger than the original container size, the container size will be increased through Arrays.copyOf to 1.5 times the original, and so on. When the data size can be predicted, the size of dynamic data can be set by default to reduce resource consumption caused by expansion.


Time complexity:

get() - Read the subscript directly - O(1)

add(E) - Add directly after - O(1)

add(idnex, E) - After inserting data, you need to move the following data - O(n)

remove(index) - After deleting, you need to move - O(n)


LinkedList

LinkedList is a doubly linked list. When adding new data, you actually call linklast to insert data at the end of the linked list. When deleting, you can directly find the corresponding data and replace the previous and next nodes of the linked list.

Time complexity:

get() - needs to be traversed - O(n)

add(E) - call linklast to add directly at the end - O(1)

add(index, E) - You need to find the data at the original index position first, and then re-specify the data before and after the linked list - O(n)

remove() - Directly call removeLast to delete the last data - O(1 )

remove(index) - You need to find the data at the original index position first - O(n)


HashMap

HashMap is actually an array inside, and each array is a one-way linked list. The array in HashMap is a class named Entry, which contains (key, value, next). These attributes. The storage rules are: the array subscript is obtained by hash(key)%len. After obtaining the array, the HashMap also has a load factor (default 0.75), when the array is 75% filled. When put, it will be expanded to 2 times the original size.

Then the question is, if the values ​​of hash(key)%len are equal during put, won’t there be a conflict? The processing method of HashMap is: there is originally an Entry[0] = A, and then a B with an index of 0 comes, then Entry[0] = B, B.next = A, and when another C comes, then Will Entry[0] = C, C.next = B, and so on. In this way, Entry will form a linked list, and when fetching, the linked list will be traversed to obtain the value.

What needs to be mentioned here is that when using hashMap, the introduced key object must rewrite the two functions of hashCode() and equal(). The reason can be referred to the source code judgment condition (if (e.hash == hash && ((k = e.key) == key || key.equals(k)))), if hashCode() is not rewritten, the corresponding array cannot be found at all. If equal( ) is not rewritten, it is impossible to determine whether the contents of the key values ​​are equal.

public V put(K key, V value) {  
        if (key == null)  
            return putForNullKey(value); //null总是放在数组的第一个链表中  
        int hash = hash(key.hashCode());  
        int i = indexFor(hash, table.length);  
        //遍历链表  
        for (Entry<k> e = table[i]; e != null; e = e.next) {  
            Object k;  
            //如果key在链表中已存在,则替换为新value  
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))){  
                V oldValue = e.value;  
                e.value = value;  
                e.recordAccess(this);  
                return oldValue;  
            }  
        }  
        modCount++;  
        addEntry(hash, key, value, i);  
        return null;  
}</k>


Supplement:

Hashmap has been optimized after java8: Since the querytime complexity of a one-way linked list is O(n), in extreme cases There may be performance issues, so if the linked list length is greater than 8, Java8 will use a red-black tree with a time complexity of O(log n) for storage to improve the efficiency of storage queries.

LinkedHashMap

The combination of the internal doubly linked list of LinkedHashMap and HashMap supports multiple iteration orders. The default is insertion order, and it can also be in access order.

Access order (accessOrder=true): The elements accessed by calling get will be placed at the end of the chain, and the iteration will start from the beginning of the chain.

Insertion order (accessOrder=false): Iterate in the insertion order Come out

TreeMap

TreeMap is internally implemented based on red-black trees, and will be naturally sorted by key type through compareTo by default. The lower level of TreeSet is TreeMap.


The above is the detailed content of Analyze the internal mechanism principles of common collections in JAVA. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?Apr 19, 2025 pm 11:45 PM

Start Spring using IntelliJIDEAUltimate version...

How to elegantly obtain entity class variable names to build database query conditions?How to elegantly obtain entity class variable names to build database query conditions?Apr 19, 2025 pm 11:42 PM

When using MyBatis-Plus or other ORM frameworks for database operations, it is often necessary to construct query conditions based on the attribute name of the entity class. If you manually every time...

How to use the Redis cache solution to efficiently realize the requirements of product ranking list?How to use the Redis cache solution to efficiently realize the requirements of product ranking list?Apr 19, 2025 pm 11:36 PM

How does the Redis caching solution realize the requirements of product ranking list? During the development process, we often need to deal with the requirements of rankings, such as displaying a...

How to safely convert Java objects to arrays?How to safely convert Java objects to arrays?Apr 19, 2025 pm 11:33 PM

Conversion of Java Objects and Arrays: In-depth discussion of the risks and correct methods of cast type conversion Many Java beginners will encounter the conversion of an object into an array...

How do I convert names to numbers to implement sorting and maintain consistency in groups?How do I convert names to numbers to implement sorting and maintain consistency in groups?Apr 19, 2025 pm 11:30 PM

Solutions to convert names to numbers to implement sorting In many application scenarios, users may need to sort in groups, especially in one...

E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?Apr 19, 2025 pm 11:27 PM

Detailed explanation of the design of SKU and SPU tables on e-commerce platforms This article will discuss the database design issues of SKU and SPU in e-commerce platforms, especially how to deal with user-defined sales...

How to set the default run configuration list of SpringBoot projects in Idea for team members to share?How to set the default run configuration list of SpringBoot projects in Idea for team members to share?Apr 19, 2025 pm 11:24 PM

How to set the SpringBoot project default run configuration list in Idea using IntelliJ...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools