search
HomeBackend DevelopmentPython TutorialDetailed explanation of iterator and generator instance methods in Python

This article mainly introduces the relevant information on detailed examples of iterators and generators in Python. Friends in need can refer to

Python Detailed explanation of iterators and generator examples in Python

This article summarizes some related knowledge of iterators and generators in Python by focusing on different application scenarios and their solutions, as follows:

1. Manually traverse the iterator

Application scenario: I want to traverse all the elements in an iterableobject, but I don’t want to use a for loop

Solution: Use next()function, and catch the StopIteration exception

def manual_iter():
  with open('/etc/passwd') as f:
    try:
      while True:
        line=next(f)
        if line is None:
          break
        print(line,end='')
      except StopIteration:
        pass
#test case
items=[1,2,3]
it=iter(items)
next(it)
next(it)
next(it)

2. Agent iteration

Application scenario: Want to perform an iterative operation directly on a container object containing a list, tuple or other iterable object

Solution: Define an iter() method to perform the iterative operation Proxy to the object inside the container

Example:

class Node:
  def init(self,value):
    self._value=value
    self._children=[]
  def repr(self):
    return 'Node({!r})'.fromat(self._value)
  def add_child(self,node):
    self._children.append(node)
  def iter(self):
    #将迭代请求传递给内部的_children属性
    return iter(self._children)
#test case
if name='main':
  root=Node(0)
  child1=Node(1)
  child2=Nide(2)
  root.add_child(child1)
  root.add_child(child2)
  for ch in root:
    print(ch)

3. Reverse iteration

Application scenario: Want to iterate a sequence in reverse

Solution: Use the built-in reversed() function or implement reversed() on a custom class

Example 1

a=[1,2,3,4]
for x in reversed(a):
  print(x) #4 3 2 1
f=open('somefile')
for line in reversed(list(f)):
  print(line,end='')
#test case
for rr in reversed(Countdown(30)):
  print(rr)
for rr in Countdown(30):
  print(rr)

Example 2

class Countdown:
  def init(self,start):
    self.start=start
  #常规迭代
  def iter(self):
    n=self.start
    while n > 0:
      yield n
      n -= 1
  #反向迭代
  def reversed(self):
    n=1
    while n <p style="text-align: left;"><strong>4. Selective iteration</strong></p><p style="text-align: left;">Application scenario: I want to traverse an iterable object, but I am not interested in some elements at the beginning of it and want to skip</p><p style="text-align: left;">Solution : Use itertools.dropwhile()</p><p style="text-align: left;">Example 1</p><pre class="brush:php;toolbar:false">with open('/etc/passwd') as f:
  for line in f:
    print(line,end='')

Example 2

from itertools import dropwhile
with open('/etc/passwd') as f:
  for line in dropwhile(lambda line:line.startwith('#'),f):
    print(line,end='')

5. Iterate multiple sequences simultaneously

Application scenario: Want to iterate multiple sequences at the same time and take an element from one sequence each time

Solution: Use the zip() function

Detailed explanation of iterator and generator instance methods in Python

Detailed explanation of iterator and generator instance methods in Python

Detailed explanation of iterator and generator instance methods in Python

Detailed explanation of iterator and generator instance methods in Python

6. Iteration of elements on different collections

Application scenario: Want to perform the same operation on multiple objects, but these objects are in different containers

Solution: Use the itertool.chain() function

Detailed explanation of iterator and generator instance methods in Python

7. Expand nested sequences

Application scenario: Want to expand a multi-level nested sequence into a single-level list

Solution: Use RecursionGenerator containing yield from statement

Example

from collections import Iterable
def flatten(items,ignore_types=(str,bytes)):
  for x in items:
    if isinstance(x,Iterable) and not isinstance(x,ignore_types):
      yield from flatten(x)
    else:
      yield x
#test case
items=[1,2,[3,4,[5,6],7],8]
for x in flatten(items):
  print(x)

Thank you for reading, I hope it can help everyone, thank you for your support of this site!

The above is the detailed content of Detailed explanation of iterator and generator instance methods in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Explain how memory is allocated for lists versus arrays in Python.Explain how memory is allocated for lists versus arrays in Python.May 03, 2025 am 12:10 AM

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

How do you specify the data type of elements in a Python array?How do you specify the data type of elements in a Python array?May 03, 2025 am 12:06 AM

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

What is NumPy, and why is it important for numerical computing in Python?What is NumPy, and why is it important for numerical computing in Python?May 03, 2025 am 12:03 AM

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Discuss the concept of 'contiguous memory allocation' and its importance for arrays.Discuss the concept of 'contiguous memory allocation' and its importance for arrays.May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

How do you slice a Python list?How do you slice a Python list?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

What are some common operations that can be performed on NumPy arrays?What are some common operations that can be performed on NumPy arrays?May 02, 2025 am 12:09 AM

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

How are arrays used in data analysis with Python?How are arrays used in data analysis with Python?May 02, 2025 am 12:09 AM

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

Atom editor mac version download

Atom editor mac version download

The most popular open source editor