


This article mainly introduces the detailed explanationpythonConcurrent acquisition of snmp information and performance testing. The editor thinks it is quite good, so I will share it with you now and give it as a reference. Let’s follow the editor and take a look.
python & snmp
There are many ready-made libraries that can be used to obtain snmp information using python, among which the more commonly used ones arenetsnmp
and pysnmp
are two libraries. There are many examples of the two libraries on the Internet.
The focus of this article is how to obtain snmp data concurrently, that is, obtain snmp information from multiple machines at the same time.
netsnmp
Let’s talk about netsnmp first. Python's netsnmp actually comes from the net-snmp package.
Python calls the net-snmp interface to obtain data through a c file.
Therefore, when acquiring multiple machines concurrently, coroutines cannot be used to acquire them. Because coroutines are used, when getting data, the coroutines will always wait for the net-snmp interface to return data, instead of switching the CPU to other coroutines while waiting for data like when using sockets. From this point of view, there is no difference between using coroutines and serial fetching.
So how to solve the problem of concurrent acquisition? You can use threads and multi-thread acquisition (of course you can also use multi-process). Multiple threads call the net-snmp interface to obtain data at the same time, and then the CPU continuously switches between multiple threads. After a thread obtains a result, it can continue to call the interface to obtain the next snmp data.
Here I wrote a sample program. First, make all hosts and oids into tasks and put them in the queue, and then start multiple threads to perform the acquisition task. The program sample is as follows:
import threading import time import netsnmp import Queue start_time = time.time() hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114", "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120", "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15", "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136", "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140", "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127", "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118", "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62", "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31", "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35", "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133", "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155", "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231", "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14", "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2", "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232", "192.24.212.231", "192.24.212.230"] oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1", ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0", ".1.3.6.1.4.1.2021.4.15.0"] myq = Queue.Queue() rq = Queue.Queue() #把host和oid组成任务 for host in hosts: for oid in oids: myq.put((host,oid)) def poll_one_host(): while True: try: #死循环从队列中获取任务,直到队列任务为空 host, oid = myq.get(block=False) session = netsnmp.Session(Version=2, DestHost=host, Community="cluster",Timeout=3000000,Retries=0) var_list = netsnmp.VarList() var_list.append(netsnmp.Varbind(oid)) ret = session.get(var_list) rq.put((host, oid, ret, (time.time() - start_time))) except Queue.Empty: break thread_arr = [] #开启多线程 num_thread = 50 for i in range(num_thread): t = threading.Thread(target=poll_one_host, kwargs={}) t.setDaemon(True) t.start() thread_arr.append(t) #等待任务执行完毕 for i in range(num_thread): thread_arr[i].join() while True: try: info = rq.get(block=False) print info except Queue.Empty: print time.time() - start_time break
In addition to supporting get operations, netsnmp also supports walk operations, that is, traversing an oid.
But you need to be careful when using walk to avoid problems such as high latency. For details, please refer to a previous blog on snmpwalk high latency problem analysis.
pysnmp
pysnmp is a set of snmp protocol libraries implemented in python. It itself provides support for asynchronous.
import time import Queue from pysnmp.hlapi.asyncore import * t = time.time() myq = Queue.Queue() #回调函数。在有数据返回时触发 def cbFun(snmpEngine, sendRequestHandle, errorIndication, errorStatus, errorIndex, varBinds, cbCtx): myq.put((time.time()-t, varBinds)) hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114", "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120", "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15", "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136", "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140", "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127", "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118", "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62", "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31", "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35", "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133", "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155", "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231", "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14", "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2", "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232", "192.24.212.231", "192.24.212.230"] oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1", ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0", ".1.3.6.1.4.1.2021.4.15.0"] snmpEngine = SnmpEngine() #添加任务 for oid in oids: for h in hosts: getCmd(snmpEngine, CommunityData('cluster'), UdpTransportTarget((h, 161), timeout=3, retries=0,), ContextData(), ObjectType(ObjectIdentity(oid)), cbFun=cbFun) time1 = time.time() - t #执行异步获取snmp snmpEngine.transportDispatcher.runDispatcher() #打印结果 while True: try: info = myq.get(block=False) print info except Queue.Empty: print time1 print time.time() - t break
pysnmp itself only supports the most basic get and getnext commands, so if you want to use walk, you need to implement it yourself.
Performance test
The performance test was conducted on both in the same environment. The two collected 198 hosts and 10 oids.
Test group | Time consuming (sec) |
---|---|
netsnmp(20 threads ) | 6.252 |
netsnmp(50 threads) | 3.269 |
netsnmp(200 threads) | 3.265 |
pysnmp | 4.812 |
Time consuming (sec) | |
---|---|
30.935 | |
12.914 | |
4.044 | |
11.043 |
Installation
netsnmp requires the installation of net-snmp. If centos, it will be more convenient to use yum.The above is the detailed content of Detailed explanation of python concurrent acquisition of snmp information and performance testing methods. For more information, please follow other related articles on the PHP Chinese website!

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Linux new version
SublimeText3 Linux latest version

Atom editor mac version download
The most popular open source editor

SublimeText3 Chinese version
Chinese version, very easy to use