This article mainly provides an in-depth analysis of the three methods of deep and shallow copying of python3 lists. It has certain reference value. Interested friends can refer to it
# Auther: Aaron Fan names = ["aaron", "alex", "james", "meihengfan"] #复制一份列表 #浅复制 (注意,这只是一个浅复制,只能复制第一层列表里面的东西,如果列表里面还有一层列表,那么那一层的列表只是把物理地址指向过去了,但是并没有复制过来) #在day2第9个视频,有详细讲这个浅复制的作用,这里不再详细注释 person = ["name", ["saving", 100]] ''' 浅复制的方法有3种: p1 = person.copy() p1 = person[:] p1 = list(person) ''' p1 = person[:] p2 = person[:] print(p1) print(p2) p1[0] = "alex" p2[0] = "fengjie" print(p1) print(p2) #注意第二层列别中的值同时变了,这里联合账号来理解浅复制的作用 p1[1][1] = 50 print(p1) print(p2) #深复制(这种复制属于完完全全的复制,可以把列表里面的列表也复制过来,而不是仅仅只是指向一个地址过去) import copy names2 = copy.deepcopy(names)
The above is the detailed content of Three methods for deep and shallow copying of python3 lists. For more information, please follow other related articles on the PHP Chinese website!

Create multi-dimensional arrays with NumPy can be achieved through the following steps: 1) Use the numpy.array() function to create an array, such as np.array([[1,2,3],[4,5,6]]) to create a 2D array; 2) Use np.zeros(), np.ones(), np.random.random() and other functions to create an array filled with specific values; 3) Understand the shape and size properties of the array to ensure that the length of the sub-array is consistent and avoid errors; 4) Use the np.reshape() function to change the shape of the array; 5) Pay attention to memory usage to ensure that the code is clear and efficient.

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

ForPythondatastorage,chooselistsforflexibilitywithmixeddatatypes,array.arrayformemory-efficienthomogeneousnumericaldata,andNumPyarraysforadvancednumericalcomputing.Listsareversatilebutlessefficientforlargenumericaldatasets;array.arrayoffersamiddlegro

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

ToaccesselementsinaPythonarray,useindexing:my_array[2]accessesthethirdelement,returning3.Pythonuseszero-basedindexing.1)Usepositiveandnegativeindexing:my_list[0]forthefirstelement,my_list[-1]forthelast.2)Useslicingforarange:my_list[1:5]extractselemen

Article discusses impossibility of tuple comprehension in Python due to syntax ambiguity. Alternatives like using tuple() with generator expressions are suggested for creating tuples efficiently.(159 characters)

The article explains modules and packages in Python, their differences, and usage. Modules are single files, while packages are directories with an __init__.py file, organizing related modules hierarchically.

Article discusses docstrings in Python, their usage, and benefits. Main issue: importance of docstrings for code documentation and accessibility.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Chinese version
Chinese version, very easy to use

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
