


This article mainly introduces the method of python using the zipper method to implement a dictionary. The article gives detailed sample codes. I believe it has certain reference value for everyone. Friends who need it can come and join us below. Let's see.
Preface
The dictionary is also called a hash table. The biggest feature is to find the corresponding value through key. Its time complexity is O( 1), the following article will introduce to you how to implement a dictionary in Python using the zipper method.
How to use a list to implement a dictionary in Python?
The biggest problem with using a list to implement a dictionary is to solve the hash conflict. If passed in the list Calculate different keys and get the same position. What should you do at this time?
The simplest way is to use the zipper method.
The zipper method: Add another list at each position in a list, so that even if there is Hash conflicts can also be stored. When the selected hashfunction is good enough and the number of
num is large enough, it can ensure that there is only one element in each list. Calculate the location of the element based on the key, and then get the value to achieve
to O(1) time.
Method example
class MyDict: def init(self, num=100): # 指定列表大小 self._num = num self._lst = [] for _ in range(self._num): self._lst.append([]) def update(self, key, value): # 添加 key-value key_index = hash(key) % self._num for i, (k, v) in enumerate(self._lst[key_index]): if key == k: self._lst[key_index][i] = [key, value] break else: self._lst[key_index].append([key, value]) def get(self, key): # 根据指定的 key 弹出值 key_index = hash(key) % self._num for k, v in self._lst[key_index]: if k == key: return v else: raise KeyError('No such {} key'.format(key)) def pop(self, key): # 根据 key 弹出元素 并且删除 key_index = hash(key) % self._num for i, (k, v) in enumerate(self._lst[key_index]): if k == key: result = v self._lst.pop(i) return result else: raise KeyError('No such {} key'.format(key)) def getitem(self, key): # 可以通过下标来取值 key_index = hash(key) % self._num for k, v in self._lst[key_index]: if k == key: return v else: raise KeyError('No such {} key'.format(key)) def keys(self): # 取得所有的key for index in range(self._num): for k, v in self._lst[index]: yield k def values(self): # 取得所有的 value for index in range(self._num): for k, v in self._lst[index]: yield v def items(self): # 取得所有的条目 for index in range(self._num): for item in self._lst[index]: yield item
The time found through key can be seen in the figure below
The above is the detailed content of Detailed explanation of python's example code for implementing dictionary method using zipper method. For more information, please follow other related articles on the PHP Chinese website!

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver Mac version
Visual web development tools

SublimeText3 Chinese version
Chinese version, very easy to use
