search
HomeBackend DevelopmentPython TutorialDetailed introduction to Python's built-in format function

英文文档:

format(value[, format_spec])

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec will depend on the type of the value argument, however there is a standard formatting syntax that is used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling str(value).

A call to <span class="pre">format(value, <span class="pre">format_spec)</span></span> is translated to <span class="pre">type(value).__format__(value, <span class="pre">format_spec)</span></span> which bypasses the instance dictionary when searching for the value’s __format__() method. A TypeError exception is raised if the method search reaches object and the format_spec is non-empty, or if either the format_spec or the return value are not strings.

 

说明:

  1. 函数功能将一个数值进行格式化显示。

  2. 如果参数format_spec未提供,则和调用str(value)效果相同,转换成字符串格式化。

>>> format(3.1415936)
&#39;3.1415936&#39;
>>> str(3.1415926)
&#39;3.1415926&#39;

  3. 对于不同的类型,参数format_spec可提供的值都不一样

#字符串可以提供的参数 &#39;s&#39; None
>>> format(&#39;some string&#39;,&#39;s&#39;)
&#39;some string&#39;
>>> format(&#39;some string&#39;)
&#39;some string&#39;

#整形数值可以提供的参数有 &#39;b&#39; &#39;c&#39; &#39;d&#39; &#39;o&#39; &#39;x&#39; &#39;X&#39; &#39;n&#39; None
>>> format(3,&#39;b&#39;) #转换成二进制
&#39;11&#39;
>>> format(97,&#39;c&#39;) #转换unicode成字符
&#39;a&#39;
>>> format(11,&#39;d&#39;) #转换成10进制
&#39;11&#39;
>>> format(11,&#39;o&#39;) #转换成8进制
&#39;13&#39;
>>> format(11,&#39;x&#39;) #转换成16进制 小写字母表示
&#39;b&#39;
>>> format(11,&#39;X&#39;) #转换成16进制 大写字母表示
&#39;B&#39;
>>> format(11,&#39;n&#39;) #和d一样
&#39;11&#39;
>>> format(11) #默认和d一样
&#39;11&#39;

#浮点数可以提供的参数有 &#39;e&#39; &#39;E&#39; &#39;f&#39; &#39;F&#39; &#39;g&#39; &#39;G&#39; &#39;n&#39; &#39;%&#39; None
>>> format(314159267,&#39;e&#39;) #科学计数法,默认保留6位小数
&#39;3.141593e+08&#39;
>>> format(314159267,&#39;0.2e&#39;) #科学计数法,指定保留2位小数
&#39;3.14e+08&#39;
>>> format(314159267,&#39;0.2E&#39;) #科学计数法,指定保留2位小数,采用大写E表示
&#39;3.14E+08&#39;
>>> format(314159267,&#39;f&#39;) #小数点计数法,默认保留6位小数
&#39;314159267.000000&#39;
>>> format(3.14159267000,&#39;f&#39;) #小数点计数法,默认保留6位小数
&#39;3.141593&#39;
>>> format(3.14159267000,&#39;0.8f&#39;) #小数点计数法,指定保留8位小数
&#39;3.14159267&#39;
>>> format(3.14159267000,&#39;0.10f&#39;) #小数点计数法,指定保留10位小数
&#39;3.1415926700&#39;
>>> format(3.14e+1000000,&#39;F&#39;)  #小数点计数法,无穷大转换成大小字母
&#39;INF&#39;

#g的格式化比较特殊,假设p为格式中指定的保留小数位数,先尝试采用科学计数法格式化,得到幂指数exp,如果-4<=exp<p,则采用小数计数法,并保留p-1-exp位小数,否则按小数计数法计数,并按p-1保留小数位数
>>> format(0.00003141566,&#39;.1g&#39;) #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点
&#39;3e-05&#39;
>>> format(0.00003141566,&#39;.2g&#39;) #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留1位小数点
&#39;3.1e-05&#39;
>>> format(0.00003141566,&#39;.3g&#39;) #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留2位小数点
&#39;3.14e-05&#39;
>>> format(0.00003141566,&#39;.3G&#39;) #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点,E使用大写
&#39;3.14E-05&#39;
>>> format(3.1415926777,&#39;.1g&#39;) #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留0位小数点
&#39;3&#39;
>>> format(3.1415926777,&#39;.2g&#39;) #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留1位小数点
&#39;3.1&#39;
>>> format(3.1415926777,&#39;.3g&#39;) #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留2位小数点
&#39;3.14&#39;
>>> format(0.00003141566,&#39;.1n&#39;) #和g相同
&#39;3e-05&#39;
>>> format(0.00003141566,&#39;.3n&#39;) #和g相同
&#39;3.14e-05&#39;
>>> format(0.00003141566) #和g相同
&#39;3.141566e-05&#39;

The above is the detailed content of Detailed introduction to Python's built-in format function. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

Explain the purpose of virtual environments in Python.Explain the purpose of virtual environments in Python.Mar 19, 2025 pm 02:27 PM

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment