


Recently, there is a need to study the security of RSA encryption and decryption; I looked at example articles on Baidu online, and there are few articles that describe how to save, transmit, and print encrypted text information, and they are all the same. Directly in a script, the encrypted text information is assigned to the variable , and then decryption is called immediately. After carefully thinking about the process of RSA encryption and decryption, I determined that there are two ends, one end is the encryption end, and the other end is the decryption end, which are generally not on the same machine. Here, I only simulated saving it in a file and then reading it out; the method of transmitting it through the network is similar.
The ciphertext encrypted with RSA cannot be directly displayed as text because there are some binary data that cannot be displayed using text information encoding. For saving, network transmission, and printing without garbled characters, base64 encoding is required for conversion; base64 encoding and decoding can convert some binary data that cannot be directly encoded with file information into regular binary data.
#/usr/bin/env python # -*- coding: utf-8 -*- import rsa import sys import base64 # 打印 python 版本 与 windows 系统编码 print("---- 1 ----") print(sys.version) print(sys.getdefaultencoding()) print(sys.getfilesystemencoding()) # 先生成一对密钥,然后保存.pem格式文件,当然也可以直接使用 print("---- 2 ----") (pubkey, privkey) = rsa.newkeys(1024) pub = pubkey.save_pkcs1() print(type(pub)) pubfile = open('public.pem','w+') pubfile.write(pub.decode('utf-8')) pubfile.close() print("---- 3 ----") pri = privkey.save_pkcs1() print(type(pri)) prifile = open('private.pem','w+') prifile.write(pri.decode('utf-8')) prifile.close() # load公钥和密钥 print("---- 4 ----") message = 'dPabdbGDpFTrwwgydVafdlsadlfsal%46645645s' print('message:',type(message)) with open('public.pem') as publickfile: p = publickfile.read() print(type(p)) pubkey = rsa.PublicKey.load_pkcs1(p.encode('utf-8')) with open('private.pem') as privatefile: p = privatefile.read() print(type(p)) privkey = rsa.PrivateKey.load_pkcs1(p.encode('utf-8')) # 用公钥加密、再用私钥解密 crypto = rsa.encrypt(message.encode('utf-8'),pubkey) print(crypto) print("---- 5 ----") print('crypto:',type(crypto)) print('cry_base64:',base64.encodestring(crypto)) print('cry_base64_utf8:',base64.encodestring(crypto).decode('utf-8')) # 保存到本地文件 cry_file = open('cry_file.txt','w+') cry_file.write(base64.encodestring(crypto).decode('utf-8')) cry_file.close() print("---- 6 ----") # 从本地文件读取 cry_file = open('cry_file.txt','r') cry_text = '' for i in cry_file.readlines(): cry_text += i print('cry_text_type:',type(cry_text)) print('cry_text:',cry_text) print('cry_base64:',cry_text.encode('utf-8')) crypto_tra = base64.decodestring(cry_text.encode('utf-8')) print("---- 7 ----") assert crypto == crypto_tra print(crypto) print("---- 8 ----") plaintext = rsa.decrypt(crypto,privkey) assert message == plaintext.decode('utf-8') print(plaintext.decode('utf-8'))
The above is the detailed content of Introduction to python rsa encryption, decryption and base64 encoding and decoding. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Dreamweaver Mac version
Visual web development tools
