


Here to repeat why the title is "use" rather than "implementation":
. First of all, the algorithm provided by professionals is higher than that of the algorithm we wrote in terms of efficiency and accuracy.
Secondly, for people who are not good at mathematics, it is very painful to study a bunch of formulas in order to implement the algorithm.
Again, unless the algorithm provided by others cannot meet their needs, there is no need to "repeat the wheel".
The following words are home. If you do n’t know the Bayesian algorithm, you can check the relevant information. Here is just a brief introduction:
1. Bayesian formula:
P ( A|B)=P(AB)/P(B)
2. Bayesian inference:
P(A|B)=P(A)×P(B|A )/P(B)
followed posed in words: , to pati had been given ’’’ ’ s’''’’ ’ ’’’’ ’ down under--- pi for a t-a-a-a-match with, and s The problem that the Sri Lankan algorithm needs to solve is how to find the similarity, that is: the value of P(B|A)
3. Three commonly used naive Bayes algorithms are provided in the scikit-learn package, as follows Explanation in order: 1) Gaussian Naive Bayes: Assume that
attributes/features are subject to normal distribution (as shown below), and are mainly used for numerical features.
# Use the data that comes with the Scikit-Learn package, the code and instructions are as follows:
>>>from sklearn import datasets ##导入包中的数据 >>> iris=datasets.load_iris() ##加载数据 >>> iris.feature_names ##显示特征名字 ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] >>> iris.data ##显示数据 array([[ 5.1, 3.5, 1.4, 0.2],[ 4.9, 3. , 1.4, 0.2],[ 4.7, 3.2, 1.3, 0.2]............ >>> iris.data.size ##数据大小 ---600个 >>> iris.target_names ##显示分类的名字 array(['setosa', 'versicolor', 'virginica'], dtype='<U10') >>> from sklearn.naive_bayes import GaussianNB ##导入高斯朴素贝叶斯算法 >>> clf = GaussianNB() ##给算法赋一个变量,主要是为了方便使用 >>> clf.fit(iris.data, iris.target) ##开始分类。对于量特别大的样本,可以使用函数partial_fit分类,避免一次加载过多数据到内存 >>> clf.predict(iris.data[0].reshape(1,-1)) ##验证分类。标红部分特别说明:因为predict的参数是数组,data[0]是列表,所以需要转换一下 array([0]) >>> data=np.array([6,4,6,2]) ##验证分类 >>> clf.predict(data.reshape(1,-1)) array([2])This is involved in a question: How to judge the data meets the normal situation distributed? There are related function judgments in the R language, or you can see it by directly
drawing, but it is all a situation where P(x, y) can be directly
drawed in the coordinate system. How to determine the data in the example is not yet clear. This part will be added later.
2) Multinomial distribution Naive Bayes: often used for text classification, the feature is the word, and the value is the number of times the word appears. ##示例来在官方文档,详细说明见第一个例子
>>> import numpy as np
>>> X = np.random.randint(5, size=(6, 100)) ##返回随机整数值:范围[0,5) 大小6*100 6行100列
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, y)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2]))
[3]
3) Bernoulli Naive Bayes: Each feature is of Boolean type, and the result is 0 or 1, that is, it does not appear
##示例来在官方文档,详细说明见第一个例子 >>> import numpy as np >>> X = np.random.randint(2, size=(6, 100)) >>> Y = np.array([1, 2, 3, 4, 4, 5]) >>> from sklearn.naive_bayes import BernoulliNB >>> clf = BernoulliNB() >>> clf.fit(X, Y) BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3]
The above is the detailed content of An introduction to how to use the naive Bayes algorithm in python. For more information, please follow other related articles on the PHP Chinese website!

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use

Dreamweaver Mac version
Visual web development tools