Home >Backend Development >Python Tutorial >Detailed explanation of python log printing and writing concurrency implementation code
Everyone generally uses logging for printing, but logging is thread-safe. There are also many introductions to multi-process. Introducing some file locks and configuring logging can ensure support.
However, through testing, it was found that when there are multiple processes, it is still easy to have the problem of repeatedly writing files or missing files when printing is normal.
My logging requirements are relatively simple, I can distinguish files and write log files correctly.
Introducing file locks; the log writing function is encapsulated into an operation_Logger class; the log name and writing level are encapsulated into a business class Logger.
This example is implemented based on python3. In this example, 20 processes are concurrently writing to 3 files respectively. Each file writes more than 100 lines of data every second. There is no data redundancy or data omission in the log file.
# -*-coding:utf-8-*- """ Author:yinshunyao Date:2017/3/5 0005下午 10:50 """ # import logging import os import time # 利用第三方系统锁实现文件锁定和解锁 if os.name == 'nt': import win32con, win32file, pywintypes LOCK_EX = win32con.LOCKFILE_EXCLUSIVE_LOCK LOCK_SH = 0 # The default value LOCK_NB = win32con.LOCKFILE_FAIL_IMMEDIATELY __overlapped = pywintypes.OVERLAPPED() def lock(file, flags): hfile = win32file._get_osfhandle(file.fileno()) win32file.LockFileEx(hfile, flags, 0, 0xffff0000, __overlapped) def unlock(file): hfile = win32file._get_osfhandle(file.fileno()) win32file.UnlockFileEx(hfile, 0, 0xffff0000, __overlapped) elif os.name == 'posix': from fcntl import LOCK_EX def lock(file, flags): fcntl.flock(file.fileno(), flags) def unlock(file): fcntl.flock(file.fileno(), fcntl.LOCK_UN) else: raise RuntimeError("File Locker only support NT and Posix platforms!") class _Logger: file_path = '' #初始化日志路径 @staticmethod def init(): if not _Logger.file_path: _Logger.file_path = '%s/Log' % os.path.abspath(os.path.dirname(__file__)) return True @staticmethod def _write(messge, file_name): if not messge: return True messge = messge.replace('\t', ',') file = '{}/{}'.format(_Logger.file_path, file_name) while True: try: f = open(file, 'a+') lock(f, LOCK_EX) break except: time.sleep(0.01) continue # 确保缓冲区内容写入到文件 while True: try: f.write(messge + '\n') f.flush() break except: time.sleep(0.01) continue while True: try: unlock(f) f.close() return True except: time.sleep(0.01) continue @staticmethod def write(message, file_name, only_print=False): if not _Logger.init(): return print(message) if not only_print: _Logger._write(message, file_name) class Logger: def __init__(self, logger_name, file_name=''): self.logger_name = logger_name self.file_name = file_name # 根据消息级别,自定义格式,生成消息 def _build_message(self, message, level): try: return '[%s]\t[%5s]\t[%8s]\t%s' \ % (time.strftime('%Y-%m-%d %H:%M:%S'), level, self.logger_name, message) except Exception as e: print('解析日志消息异常:{}'.format(e)) return '' def warning(self, message): _Logger.write(self._build_message(message, 'WARN'), self.file_name) def warn(self, message): _Logger.write(self._build_message(message, 'WARN'), self.file_name) def error(self, message): _Logger.write(self._build_message(message, 'ERROR'), self.file_name) def info(self, message): _Logger.write(self._build_message(message, 'INFO'), self.file_name, True) def debug(self, message): _Logger.write(self._build_message(message, 'DEBUG'), self.file_name) # 循环打印日志测试函数 def _print_test(count): logger = Logger(logger_name='test{}'.format(count), file_name='test{}'.format(count % 3)) key = 0 while True: key += 1 # print('{}-{}'.format(logger, key)) logger.debug('%d' % key) logger.error('%d' % key) if __name__ == '__main__': from multiprocessing import Pool, freeze_support freeze_support() # 进程池进行测试 pool = Pool(processes=20) count = 0 while count < 20: count += 1 pool.apply_async(func=_print_test, args=(count,)) else: pool.close() pool.join()
The above is the detailed content of Detailed explanation of python log printing and writing concurrency implementation code. For more information, please follow other related articles on the PHP Chinese website!