Home >Java >javaTutorial >Detailed introduction to the algorithm from Java array to HashMap
I forgot which book I have seen a sentence like "All data structures are the evolution of arrays". It actually makes sense when you think about it, because the computer's memory is actually linear. storage.
Java sample code:
int[] array = new int[5]
Ignore Object header information and array length information, the JVM will allocate 20 bytes of memory space in the heap when executing, it looks like It's like this:
Such a data structure can easily access data through array subscripts, but it requires traversing the array when searching, on average The time complexity is O(n/2).
When the amount of data is large or search operations are frequent, such traversal operations are almost unacceptable. So, how can we find data quickly in less time?
If the elements in the array are sorted, then the natural way is to use binary search.
For example, there is an integer array with a length of 1000. The integers in the array are arranged from small to large. If I want to know whether 6000 is in this array. Then I can first check whether the number in array[500] is 6000. If the number in array[500] is smaller than 6000, then check the number in array[750]...and so on. Then after up to 10 times, the result can be determined. .
The time complexity of this algorithm is O(logN).
However, in most cases, array elements are unordered, and the time complexity O(NlogN) required for sorting usually far exceeds the time required for traversal.
So, the problem is back to its original point. How to quickly find data in disordered data?
I still remember when I first learned Programming I watched "Programming Pearls" not long ago. There is a description in it: In the 1970s, Mike Lesk was a telephone The company has implemented a phone number search function. For example, entering the numeric key 5375*6* corresponding to LESK*M* can return the correct phone number or optional list, with an incorrect matching rate of only 0.2%.
How can we do it?
At that time, I didn’t understand data structures and algorithms at all. It’s still very interesting to restore the process of my wild thinking at that time.
Add all numbers (* key is 11), the sum of 5375*6* is 48. The sum of most inputs does not exceed 100, which means that tens of thousands of phone numbers will be clustered in the first 100 positions of the array, so it is not feasible.
Multiply all the numbers and the product is 381150. This seems feasible, but there is a problem: the products of lesk, lsek, slke... are the same, and each number key also corresponds to 3 letters, which means that the probability of repetition is very high.
①Strings with the same letters but different alphabetical orders can avoid conflicts in this way: each number is first multiplied by The serial number is then multiplied by other values.
②Each numeric key corresponds to 3 English letters. If the user does not enter the sequence number of the letter in the numeric key, there is no way to further calculate accurately. The only direction that can be considered is to make probability statistics based on the given word list, so it will not be considered.
Even if improved multiplication is used, the products calculated by different name letters may still be repeated. So what should be done when a conflict occurs?
Save to the next blank position in sequence? Come to think of it this doesn't work. If the next blank position happens to be the product of another set of letters, a secondary conflict occurs.
Fortunately, there are prime numbers.
Prime numbers can only be divisible by 1 and itself, so any product obtained by the above multiplication cannot be a prime number, so the phone number is not stored in the prime number position.
Therefore, starting from the current product and going to the rightsearchfor the next prime number. If the prime number position is still used, then continue to search for the next nearest prime number...
At this point, the problem seems to be solved.
The user inputs a string of numbers, the product is calculated according to the formula, and the phone number at the subscript position is returned. If it is incorrect, the subsequent prime numbers are searched sequentially until the array element subscripted by a certain prime number is empty, and finally all found phone numbers are returned. In most cases, the phone number can be found in O(1) time complexity.
唯一的问题是,按照上述思路建立的数组实在是太大了。一个姓名有10个字母,假如每一个字母对应的数字都是9,最后得到的积约是9的17次方。这意味着要建立9^17大小的数组,这是完全不可行的。
即使不考虑数组过大因素,以我当时初学编程的水平,这样的程序也是没有能力写出来的。
我之所以还原这个思考的过程,是觉得独立思考的过程非常有趣也很有价值。想想,其实现有的算法都是当年那些大牛在实际工程中一步一步寻求解决方案而最终推导得到的。
因此,当在工程中碰到一些棘手的难题时,只要乐于思考分解问题并寻求每一个小问题解决方案,那么很多所谓的难题都是可以解决的。
后来看了《数据结构与算法分析.Java语言描述》,我才知道原来我的思路其实就是开放寻址法(Open Addressing)。
JDK的HashMap使用的则是分离链接法(separate chaining)。不同:增加了桶的概念来保存冲突的数据;进行求余运算来降低数组大小。
那么,就谈谈Java中的HashMap吧。
HashMap的本质依然是数组,而且是一个不定长的多维数组,近似于下图这样的结构:
HashMap中的数组保存链表的头节点。
保存数据:
计算key的hashCode,再与数组长度进行求余运算得到数组下标(链表头节点)。
如果该位置为空,生成一个新的链表节点并保存到该数组。
如果该位置非空,循环比对链表的每一个节点:已经存在key相同的节点,覆盖旧节点;不存在key相同的节点,将新节点作为链表的尾节点(注:查看JDK1.8中的源码,新节点总是加入到链表末尾,而不是如JDK1.6一般作为链表头节点)。
查找数据:
计算key的hashCode,再与数组长度进行求余运算得到数组下标(链表头节点)。如果链表不为空,先比对首节点,如果首节点key相同(hashCode相同且equals为true),直接返回首节点的value;首节点key不同则顺序遍历比对链表其它节点,返回key相同的节点的value(未找到key相同的节点则返回null)。
HashMap引入链表的目的就是为了解决上一节讨论过的重复冲突问题。
注意事项:
如果所有key的hashcode相同,假定均为0,则0%4 = 0,所有元素就会都保存到链表0,保存和查找每一个数据都需要遍历链表0。那么,此时的HashMap实质上已经退化成了链表,时间复杂度也从设计的O(1)上升到了O(n/2)。
为了尽可能地让HashMap的查找和保存的时间复杂度保持在O(1),就需要让元素均匀地分布在每一个链表,也就是每一个链表只保存一个元素。
那么影响因素有哪些?
一是key的hashcode不能重复,如果重复就肯定会有链表保存至少2个元素;
二是哈希函数设计,如果只是简单的求余,那么余数会有大量重复;
三是链表的大小,如果100个元素要分布在长度为10的数组,无论怎么计算都会导致其中有链表保存多个元素,最好的情况是每个链表保存10个;
下面分别详细介绍这三个因素的算法设计。
这是String类的hashCode生成代码。
public int hashCode() { int h = hash; if (h == 0 && value.length > 0) { char val[] = value; for (int i = 0; i < value.length; i++) { h = 31 * h + val[i]; } hash = h; } return h; }
String类的value是char[],char可以转换成UTF-8编码。譬如,’a’、’b’、’c’的UTF-8编码分别是97,98,99;“abc”根据上面的代码转换成公式就是:
h = 31 * 0 + 97 = 97; h = 31 * 97 + 98 = 3105; h = 31 * 3105 + 99 = 96354;
使用31作为乘数因子是因为它是一个比较合适大小的质数:如值过小,当参与计算hashcode的项数较少时会导致积过小;如为偶数,则相当于是左位移,当乘法溢出时会造成有规律的位信息丢失。而这两者都会导致重复率增加。
如果使用32作为乘数因子(相当于 << 5),以字符串“abcabcabcabcabc”为例,它的hashcode的每一步计算结果如下图:
如上图所示,字符串末尾每3个字母就会产生一个重复的hashcode。这并不是一个巧合,即使换成其它的英文字母,也有很容易产生重复,而使用质数则会大大地减少重复可能性。有兴趣的可以参照上图去作一下左位移运算,会发现这并不是偶然。
《Effective Java》一书中详细描述了hashcode的生成规则和注意事项,有兴趣的可以去看看。
从源代码的hashCode()方法可知,String类对象保存了已经计算好的hashCode,如果已经调用过hashCode()方法,那么第二次调用时不会再重新生成,而是直接返回已经计算好的hashCode。
String对象总是会存放到String类私有维护的常量池中,不显式使用new关键字时,如果常量池中已经有value相同的对象,那么总是会返回已有对象的引用。因此,很多情况下生成hashCode这种比较昂贵的操作实际上并不需要执行。
现在,已经得到了重复率很低的hashCode,还有什么美中不足的地方吗?
扰动函数
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
下图还是以字符串“abcabcabcabcabc”为例,使用上面方法得到的运算过程和结果。
为什么要先无符号右位移16位,然后再执行异或运算?看看下图的二进制的与运算,你就会明白。
你会发现只要二进制数后4位不变,前面的二进制位无论如何变化都会出现相同的结果。为了防止出现这种高位变化而低位不变导致的运算结果相同的情况,因此需要将高位的变化也加入进来,而将整数的二进制位上半部与下半部进行异或操作就可以得到这个效果。
为什么要使用与运算?
因为哈希函数的计算公式就是hashCode % tableSize,当tableSize是2的n次方(n≥1)的时候,等价于hashCode & (tableSize – 1)。
扰动函数优化前:1954974080 % 16 = 1954974080 & (16 – 1) = 0
扰动函数优化后:1955003654 % 16 = 1955003654 & (16 – 1) = 6
这就是为什么需要增加扰动函数的原因。
源代码详解
代码解释之前需要补充说明一下,jdk1.8引入了红黑树来解决大量冲突时的查找效率,所以当一个链表中的数据大到一定规模的时候,链表会转换成红黑树。因此在jdk1.8中,HashMap的查找和保存数据的最大时间复杂度实际上就是红黑树的时间复杂度O(logN)。
以下是HashMap中的保存数据的方法源代码,相信经过以上的描述,已经非常容易看懂这一段代码。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; //HashMap数组 Node<K,V> p; //初始化需要保存的数据 int n; //数组容量 int i; //数组下标 /* 如果数组为空或0,初始化容量为16 */ if ((tab = table) == null || (n = tab.length) == 0){ n = (tab = resize()).length; } /* 使用哈希函数获取数组位置(如果为空,保存新节点到数组) */ if ((p = tab[i = (n - 1) & hash]) == null){ tab[i] = newNode(hash, key, value, null); } /* 如果数组位置已经有值,则使用下列方式保存数据 */ else { Node<K,V> e; //临时节点保存新值 K k; //临时变量用于比较key //如果头节点与新节点的key的hash值相同 且 key的值相等,e赋值为旧节点 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))){ e = p; } //如果头节点是一个红黑树节点,那么e将保存为树节点 else if (p instanceof TreeNode){ e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); } //如果头节点与新节点不同,且头节点不是红黑树节点,循环比对链表的所有节点 else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { //如果直到链表尾未找到相同key的节点,将新结点作为最后一个节点加入到链表 p.next = newNode(hash, key, value, null); //如果链表节点数大于等于8-1,转换成红黑树;转换成红黑树的最小节点数是8 if (binCount >= TREEIFY_THRESHOLD - 1){ treeifyBin(tab, hash); } break; } //如果循环过程中发现新旧key的值相同,跳转:是否覆盖旧值 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))){ break; } p = e; } } //是否覆盖旧值 if (e != null) { V oldValue = e.value; //如果新值不为空且(允许修改旧值 或 旧值为空),覆盖旧节点的值 if (!onlyIfAbsent || oldValue == null){ e.value = value; } afterNodeAccess(e); //回调函数,这里是空函数,但在linkedHashMap中实现了此方法 return oldValue; //返回旧值 } } //用于比较判断是否在遍历集合过程中有其它线程修改集合,详情请网上搜索fail-fast快速失败机制 ++modCount; //当key数量大于允许容量时进行扩容。允许容量在HashMap中是数组长度 * 装填因子(默认0.75) if (++size > threshold){ resize(); } //回调函数,这里是空函数,但在linkedHashMap中实现了此方法 afterNodeInsertion(evict); return null; }
简化后的伪代码
putval(key, value){ index = key.hashcode % tablesize; if(null == table[index]){ table[index] = new node(key, value); }else{ firstNode = table[index]; nextNode = firstNode.next; while(nextNode.hasNextNode()){ //如果找到相同key的旧节点,覆盖旧节点 if(key == nextNode.key){ nextNode = new node(key, value); break; } //如果到队列末尾依然没有找到相同key的旧节点,将新结点加入到最后一个节点的末尾 if(nextNode.next == null){ nextNode.next = new node(key, value); break; } nextNode = nextNode.next; } } }
链表大小设计
代码注释中已经稍有提及,这里再分别展开讨论。
①容量选择
HashMap的初始容量是 1 << 4,也就是16。以后每次扩容都是size << 1,也就是扩容成原来容量的2倍。如此设计是因为 2^n-1(n≥1)的二进制表示总是为重复的1,方便进行求余运算。
《数据结构与算法分析.Java语言描述》一书中的建议是容量最好是质数,有助于降低冲突,但没有给出证明或实验数据。
质数虽然是神奇的数字,但个人感觉在这里并没有特别的用处。
根据公式index = hashCode % size可知,无论size是质数还是非质数,index的值区间都是0至(size-1)之间,似乎真正起决定作用的是hashCode的随机性要好。
这里先不下结论,待以后再写一个随机函数比较下质数和非质数重复率。
②装填因子
装填因子默认是0.75,也就是说如果数组容量为16,那么当key的数量大于12时,HashMap会进行扩容。
装填因子设计成0.75的目的是为了平衡时间和空间性能。过小会导致数组太过于稀疏,空间利用率不高;过大会导致冲突增大,时间复杂度会上升。
The red-black tree was introduced in JDK 1.8. I want to use simple language to explain clearly the data structure, addition, deletion, modification, and time complexity analysis of the red-black tree. This is a Complex and difficult tasks are better described individually, so leave that for later.
HashMap in Jdk solves the time complexity problem of any data set, designed The hash function performs well in the case of unknown data sets.
But if there is a known data set (such as a Java keyword set), how to design a hash function to meet the following two requirements at the same time:
⑴ Container capacity and data set The sizes are exactly the same;
⑵ There is no conflict.
That is to say, when a certain data set is given, if a hash function allows each node of the container to have and only one data element, such a hash function is called the minimum Perfect hash function.
Recently I was studying the principles of compilation, and mentioned how to solve the O(1) time complexity search problem of keyword sets, and mentioned that the minimum perfect hash function can be used. When I see a term like this, I immediately feel very good and noble.
The above is the detailed content of Detailed introduction to the algorithm from Java array to HashMap. For more information, please follow other related articles on the PHP Chinese website!