search
HomeBackend DevelopmentPython Tutorial30 must-see features and skills of the Python language (2)

Since I started learningPython, I decided to maintain a frequently used "trick" ” list. Whenever I see a paragraph that makes me think, “Cool, that could work!” ” code (in an example, in StackOverflow, in open source software, etc.), I try it until I understand it and then add it to the list. This post is Cleaned up part of the list. If you are an experienced Python programmer, although you may already know some, you may still find some that you don't know. If you are a C, C++ or Java programmer who is learning Python. , or just starting to learn programming, then you will find many of them very useful like I did

Each trick or language feature can only be verified through examples without too much explanation. . While I've tried to make the examples clear, some of them will still look a little complicated depending on your familiarity, so if it's not clear after looking at the examples, the titles will provide enough information to get you through Google. Get detailed content.

The list is sorted by difficulty, with commonly used language features and techniques at the front.

>>> a = [[1, 2], [3, 4], [5, 6]]

>>>

list

(itertools.chain.from_iterable(a)) [1, 2, 3, 4, 5, 6]

>>> sum(a, [])

[ 1, 2, 3, 4, 5, 6]

>>> [x

for

l in a for x in l] [1, 2, 3, 4, 5, 6]

>>> a = [[[1, 2], [3, 4]] , [[5, 6], [7, 8]]]

>>> [x for l1 in a for l2 in l1 for x in l2]

[1 , 2, 3, 4, 5, 6, 7, 8]

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]

>>> flatten = lambda x: [y for l in x for y in flatten(l)]

if

type( x) is list else [x] >>> flatten(a)

[1, 2, 3, 4, 5, 6, 7 , 8]

Note: According to Python documentation, itertools.chain.from_iterable is preferred.

1.16

Generator

Expression>>> g = (x ** 2 for x in x

range

(10)) >>>

next

(g) 0

>>> next(g )

1

>>> next(g)

4

>>> next(g)

9

>>> sum(x ** 3 for x in xrange(10))

2025

>>> sum (x ** 3 for x in xrange(10) if x % 3 == 1)

408

1.17 Iterate dictionary

>>> m = {x: x ** 2 for x in range(5)}

>>> m

{0: 0, 1: 1, 2: 4, 3: 9 , 4: 16}

>>> m = {x: 'A' + str(x) for x in range(10)}

>>> m

{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

1.18 Reverse the dictionary by iterating over the dictionary

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m

{'d': 4, 'a': 1, 'b': 2, 'c': 3}

>>> {v: k for k, v in m.items()}

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

1.19 Named sequence (collections.namedtuple)

> >> Point = collections.namedtuple('Point', ['x', 'y'])

>>> p = Point(x=1.0, y=2.0)

>>> p

Point(x=1.0, y=2.0)

>>> p.x

1.0

>>> p.y

2.0

1.20

Inheritance of named lists

:>>>

class

Point(collections.namedtuple('PointBase', ['x', 'y'])): ... slots = ()

...     def add(self, other):  

...             return Point(x=self.x + other.x, y=self.y + other.y)  

...  

>>> p = Point(x=1.0, y=2.0)  

>>> q = Point(x=2.0, y=3.0)  

>>> p + q  

Point(x=3.0, y=5.0) 

1.21   集合及集合操作

>>> A = {1, 2, 3, 3}  

>>> A  

set([1, 2, 3])  

>>> B = {3, 4, 5, 6, 7}  

>>> B  

set([3, 4, 5, 6, 7])  

>>> A | B  

set([1, 2, 3, 4, 5, 6, 7])  

>>> A & B  

set([3])  

>>> A - B  

set([1, 2])  

>>> B - A  

set([4, 5, 6, 7])  

>>> A ^ B  

set([1, 2, 4, 5, 6, 7])  

>>> (A ^ B) == ((A - B) | (B - A))  

True 

1.22   多重集及其操作 (collections.Counter)

>>> A = collections.Counter([1, 2, 2])  

>>> B = collections.Counter([2, 2, 3])  

>>> A  

Counter({2: 2, 1: 1})  

>>> B  

Counter({2: 2, 3: 1})  

>>> A | B  

Counter({2: 2, 1: 1, 3: 1})  

>>> A & B  

Counter({2: 2})  

>>> A + B  

Counter({2: 4, 1: 1, 3: 1})  

>>> A - B  

Counter({1: 1})  

>>> B - A  

Counter({3: 1}) 

1.23   迭代中最常见的元素 (collections.Counter)

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])  

>>> A  

Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})  

>>> A.most_common(1)  

[(3, 4)]  

>>> A.most_common(3)  

[(3, 4), (1, 2), (2, 2)] 

1.24   双端队列 (collections.deque)

>>> Q = collections.deque()  

>>> Q.append(1)  

>>> Q.appendleft(2)  

>>> Q.extend([3, 4])  

>>> Q.extendleft([5, 6])  

>>> Q  

deque([6, 5, 2, 1, 3, 4])  

>>> Q.pop()  

>>> Q.popleft()  

>>> Q  

deque([5, 2, 1, 3])  

>>> Q.rotate(3)  

>>> Q  

deque([2, 1, 3, 5])  

>>> Q.rotate(-3)  

>>> Q  

deque([5, 2, 1, 3]) 

1.25   有最大长度的双端队列 (collections.deque)

>>> last_three = collections.deque(maxlen=3)  

>>> for i in xrange(10):  

...     last_three.append(i)  

...     print ', '.join(str(x) for x in last_three)  

...  

0, 1 

0, 1, 2 

1, 2, 3 

2, 3, 4 

3, 4, 5 

4, 5, 6 

5, 6, 7 

6, 7, 8 

7, 8, 9 

1.26   字典排序 (collections.OrderedDict)

>>> m = dict((str(x), x) for x in range(10))  

>>> print ', '.join(m.keys())  

1, 0, 3, 2, 5, 4, 7, 6, 9, 8 

>>> m = collections.OrderedDict((str(x), x) for x in range(10))  

>>> print ', '.join(m.keys())  

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))  

>>> print ', '.join(m.keys())  

10, 9, 8, 7, 6, 5, 4, 3, 2, 1 

1.27   缺省字典 (collections.defaultdict)

>>> m = dict()  

>>> m['a']  

Traceback (most recent call last):  

  File "", line 1, in module>  

KeyError: 'a' 

>>>  

>>> m = collections.defaultdict(int)  

>>> m['a']  

>>> m['b']  

>>> m = collections.defaultdict(str)  

>>> m['a']  

'' 

>>> m['b'] += 'a' 

>>> m['b']  

'a' 

>>> m = collections.defaultdict(lambda: '[default value]')  

>>> m['a']  

'[default value]' 

>>> m['b']  

'[default value]' 

1.28   用缺省字典表示简单的树

>>> import json  

>>> tree = lambda: collections.defaultdict(tree)  

>>> root = tree()  

>>> root['menu']['id'] = 'file' 

>>> root['menu']['value'] = 'File' 

>>> root['menu']['menuitems']['new']['value'] = 'New' 

>>> root['menu']['menuitems']['new']['onclick'] = 'new();' 

>>> root['menu']['menuitems']['open']['value'] = 'Open' 

>>> root['menu']['menuitems']['open']['onclick'] = 'open();' 

>>> root['menu']['menuitems']['close']['value'] = 'Close' 

>>> root['menu']['menuitems']['close']['onclick'] = 'close();' 

>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))  

{  

    "menu": {  

        "id": "file",  

        "menuitems": {  

            "close": {  

                "onclick": "close();",  

                "value": "Close" 

            },  

            "new": {  

                "onclick": "new();",  

                "value": "New" 

            },  

            "open": {  

                "onclick": "open();",  

                "value": "Open" 

            }  

        },  

        "value": "File" 

    }  

(到https://gist.github.com/hrldcpr/2012250查看详情)

1.29   映射对象到唯一的序列数 (collections.defaultdict)

>>> import itertools, collections  

>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)  

>>> value_to_numeric_map['a']  

>>> value_to_numeric_map['b']  

>>> value_to_numeric_map['c']  

>>> value_to_numeric_map['a']  

>>> value_to_numeric_map['b']  


The above is the detailed content of 30 must-see features and skills of the Python language (2). For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment