


Detailed introduction to graphic code examples of C# thread synchronization
This article mainly introduces the relevant knowledge of thread synchronization in C#. It has a very good reference value. Let’s take a look at it with the editor below
Foreword
When a thread in the thread pool is blocked, the thread pool will create additional threads, and creating, destroying and scheduling threads is quite expensive. memory resources. In addition, many developers are used to creating more threads when they see that the threads of their programs are not doing anything useful. In order to build scalable and responsive programs, we introduced a detailed explanation of C# asynchronous programming earlier
But asynchronous programming also has serious problems. If two different threads access the same variables and data, according to the implementation of our asynchronous function, it is impossible for two threads to access the same data at the same time. At this time we need Thread synchronization. When multiple threads access shared data at the same time, thread synchronization can prevent data corruption. The reason why the concept of simultaneousness is emphasized is because the essence of thread synchronization is a timing issue.
Asynchronous and synchronous are relative. Synchronization means sequential execution. After executing one, you need to wait and coordinate the execution of the next one. Asynchronous means that they are independent of each other and continue to do their own things while waiting for an event. There is no need to wait for the event to complete before working again. Threads are a way to achieve asynchronous. Asynchronous means that the main thread that calls the method does not need to wait for the completion of another thread synchronously, so that the main thread can do other things.
Primitives User Mode and Kernel Mode Constructs
Basic Concepts
Primitives: simple constructs that can be used in code
User Mode: Threads are coordinated through special CPU instructions, the operating system always Undetected A thread blocking on a primitive user-mode construct.
Kernel mode: Provided by Windows itself, functions implemented by the kernel are called in the thread of the application.
User mode constructs
Volatile constructs
The C# compiler, JIT compiler and CPU will all optimize the code. They try to ensure that our intentions are preserved, but from a multi-threading perspective, we The intention will not necessarily be preserved. Here is an example:
static void Main(string[] args) { Console.WriteLine("让worker函数运行5s后停止"); var t = new Thread(Worker); t.Start(); Thread.Sleep(5000); stop = true; Console.ReadLine(); } private static bool stop = false; private static void Worker(object obj) { int x = 0; while (!stop) { x++; } Console.WriteLine("worker函数停止x={0}",x); }
If the compiler checks that stop is false, it generates code to enter an infinite loop and keeps incrementing x in the loop, so the loop is optimized It is completed quickly, but the compiler only detects stop once, not every time.
Example 2---Two threads access simultaneously:
class test { private static int m_flag = 0; private static int m_value = 0; public static void Thread1(object obj) { m_value = 5; m_flag = 1; } public static void Thread2(object obj) { if (m_flag == 1) Console.WriteLine("m_value = {0}", m_value); } //多核CPU机器才会出现线程同步问题 public void Exec() { var thread1 = new Thread(Thread1); var thread2 = new Thread(Thread2); thread1.Start(); thread2.Start(); Console.ReadLine(); } }
When the program is executed, the compiler must read the variables m_flag and m_value from RAM into the CPU register. RAM first passes the value of m_value 0 to thread1 Change the value to 5, but thread2 does not know that thread2 still thinks the value is 0. Generally speaking, this problem is more likely to occur on multi-core CPUs. The more CPUs there are, the greater the chance that multiple threads will access resources at the same time.
The keyword volatile disables some optimizations performed by the C# compiler, JTP compiler and CPU. If applied to variables, the field will not be allowed to be cached in the CPU's register, ensuring that the reading and writing of fields are performed in RAM. .
Interlocking construction
Each method in the System.Threading.Interlocked class performs an atomic read and write operation. Any variable write before calling an Interlocked method will precede the call of this Interlocked method. is executed, and any variable reads after the call are read after this call.
Interlocked method mainly performs static operations on INT32 variables such as Add, Decrement, Compare, Exchange, CompareChange and other methods, and also accepts parameters of object, Double and other types.
Atomic operation: refers to an operation that will not be interrupted by the thread scheduling mechanism; once this operation starts, it will run until the end without any context switch (switching to another thread) in the middle.
Code demonstration:
Instructions: Query several web servers asynchronously through the Interlocked method and return data at the same time, and the results are only executed once.
//上报状态类型 enum CoordinationStatus { Cancel, Timeout, AllDone }
class AsyncCoordinator { //AllBegun 内部调用JustEnded来递减它 private int _mOpCount = 1; //0=false,1=true private int _mStatusReported = 0; private Action<CoordinationStatus> _mCallback; private Timer _mTimer; //发起一个操作之前调用 public void AboutToBegin(int opsToAdd = 1) { Interlocked.Add(ref _mOpCount, opsToAdd); } //处理好一个操作的结果之后调用 public void JustEnded() { if (Interlocked.Decrement(ref _mOpCount) == 0) { ReportStatus(CoordinationStatus.AllDone); } } //该方法必须在发起所有操作后调用 public void AllBegin(Action<CoordinationStatus> callback, int timeout = Timeout.Infinite) { _mCallback = callback; if (timeout != Timeout.Infinite) { _mTimer = new Timer(TimeExpired, null, timeout, Timeout.Infinite); JustEnded(); } } private void TimeExpired(object o) { ReportStatus(CoordinationStatus.Timeout); } public void Cancel() { ReportStatus(CoordinationStatus.Cancel); } private void ReportStatus(CoordinationStatus status) { //如果状态从未报告过,就报告它,否则就忽略它,只调用一次 if (Interlocked.Exchange(ref _mStatusReported, 1) == 0) { _mCallback(status); } } }
class MultiWebRequest { //辅助类 用于协调所有的异步操作 private AsyncCoordinator _mac = new AsyncCoordinator(); protected Dictionary<string,object> _mServers = new Dictionary<string, object> { {"http://www.baidu.com",null},{"http://www.Microsoft.com",null},{"http://www.cctv.com",null}, {"http://www.souhu.com",null},{"http://www.sina.com",null},{"http://www.tencent.com",null}, {"http://www.youku.com",null} }; private Stopwatch sp; public MultiWebRequest(int timeout = Timeout.Infinite) { sp = new Stopwatch(); sp.Start(); //通过异步方式一次性发起请求 var httpclient = new HttpClient(); foreach (var server in _mServers.Keys) { _mac.AboutToBegin(1); httpclient.GetByteArrayAsync(server).ContinueWith(task => ComputeResult(server, task)); } _mac.AllBegin(AllDone,timeout); Console.WriteLine(""); } private void ComputeResult(string server, Task<Byte[]> task) { object result; if (task.Exception != null) { result = task.Exception.InnerException; } else { //线程池处理IO result = task.Result.Length; } //保存返回结果的长度 _mServers[server] = result; _mac.JustEnded(); } public void Cancel() { _mac.Cancel(); } private void AllDone(CoordinationStatus status) { sp.Stop(); Console.WriteLine("响应耗时总计{0}",sp.Elapsed); switch (status) { case CoordinationStatus.Cancel: Console.WriteLine("操作取消"); break; case CoordinationStatus.AllDone: Console.WriteLine("操作完成,完成的结果如下"); foreach (var server in _mServers) { Console.WriteLine("{0}",server.Key); object result = server.Value; if (result is Exception) { Console.WriteLine("错误原因{0}",result.GetType().Name); } else { Console.WriteLine("返回字节数为:{0}",result); } } break; case CoordinationStatus.Timeout: Console.WriteLine("操作超时"); break; default: throw new ArgumentOutOfRangeException("status", status, null); } } }
It is highly recommended that you refer to the above code. I will often refer to this model when accessing the server.
Simple spin lock
class SomeResource { private SimpleSpinLock s1 = new SimpleSpinLock(); public void AccessResource() { s1.Enter(); //一次是有一个线程才能进入访问 s1.Leave(); } } class SimpleSpinLock { private int _mResourceInUse; public void Enter() { while (true) { if(Interlocked.Exchange(ref _mResourceInUse,1)==0) return; } } public void Leave() { Volatile.Write(ref _mResourceInUse,1); } }
This is a simple implementation of a thread synchronization lock. The biggest problem with this kind of lock is that when there is competition, it will cause the thread to "spin", which will It wastes valuable CPU time and prevents the CPU from doing more work. Therefore, this spin lock should be used to protect code that executes very quickly.
The above is the detailed content of Detailed introduction to graphic code examples of C# thread synchronization. For more information, please follow other related articles on the PHP Chinese website!

C# and .NET provide powerful features and an efficient development environment. 1) C# is a modern, object-oriented programming language that combines the power of C and the simplicity of Java. 2) The .NET framework is a platform for building and running applications, supporting multiple programming languages. 3) Classes and objects in C# are the core of object-oriented programming. Classes define data and behaviors, and objects are instances of classes. 4) The garbage collection mechanism of .NET automatically manages memory to simplify the work of developers. 5) C# and .NET provide powerful file operation functions, supporting synchronous and asynchronous programming. 6) Common errors can be solved through debugger, logging and exception handling. 7) Performance optimization and best practices include using StringBuild

.NETFramework is a cross-language, cross-platform development platform that provides a consistent programming model and a powerful runtime environment. 1) It consists of CLR and FCL, which manages memory and threads, and FCL provides pre-built functions. 2) Examples of usage include reading files and LINQ queries. 3) Common errors involve unhandled exceptions and memory leaks, and need to be resolved using debugging tools. 4) Performance optimization can be achieved through asynchronous programming and caching, and maintaining code readability and maintainability is the key.

Reasons for C#.NET to remain lasting attractive include its excellent performance, rich ecosystem, strong community support and cross-platform development capabilities. 1) Excellent performance and is suitable for enterprise-level application and game development; 2) The .NET framework provides a wide range of class libraries and tools to support a variety of development fields; 3) It has an active developer community and rich learning resources; 4) .NETCore realizes cross-platform development and expands application scenarios.

Design patterns in C#.NET include Singleton patterns and dependency injection. 1.Singleton mode ensures that there is only one instance of the class, which is suitable for scenarios where global access points are required, but attention should be paid to thread safety and abuse issues. 2. Dependency injection improves code flexibility and testability by injecting dependencies. It is often used for constructor injection, but it is necessary to avoid excessive use to increase complexity.

C#.NET is widely used in the modern world in the fields of game development, financial services, the Internet of Things and cloud computing. 1) In game development, use C# to program through the Unity engine. 2) In the field of financial services, C#.NET is used to develop high-performance trading systems and data analysis tools. 3) In terms of IoT and cloud computing, C#.NET provides support through Azure services to develop device control logic and data processing.

.NETFrameworkisWindows-centric,while.NETCore/5/6supportscross-platformdevelopment.1).NETFramework,since2002,isidealforWindowsapplicationsbutlimitedincross-platformcapabilities.2).NETCore,from2016,anditsevolutions(.NET5/6)offerbetterperformance,cross-

The C#.NET developer community provides rich resources and support, including: 1. Microsoft's official documents, 2. Community forums such as StackOverflow and Reddit, and 3. Open source projects on GitHub. These resources help developers improve their programming skills from basic learning to advanced applications.

The advantages of C#.NET include: 1) Language features, such as asynchronous programming simplifies development; 2) Performance and reliability, improving efficiency through JIT compilation and garbage collection mechanisms; 3) Cross-platform support, .NETCore expands application scenarios; 4) A wide range of practical applications, with outstanding performance from the Web to desktop and game development.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools
