search
HomeBackend DevelopmentPython TutorialPython uses the arcpy.mapping module to batch plot drawings

出图是项目里常见的任务,有的项目甚至会要上百张图片,所以批量出土工具很有必要。arcpy.mapping就是ArcGIS里的出图模块,能快速完成一个出图工具。

arcpy.mapping模块里常用的类有MapDocument、DataFrame、Layer、DataDrivenPages和TextElement。

 MapDocument类是地图文档(.mxd文件)对应的类。初始化参数是一个字符串,一般是.mxd文件的路径:

 mxd=arcpy.mapping.MapDocument(r"F:\GeoData\ChinaArea\ChinaVector.mxd")

DataFrame类用于操作地图内的Data Frame(即下图的Layers),能够控制地图的范围、比例尺等。用arcpy.mapping.ListDataFrames(map_document, {wildcard})函数获取。

df= arcpy.mapping.ListDataFrames(mxd)[0]


 Layer类用于操作具体的图层。能够控制图斑的样式、可见性等。可以用.lyr文件的路径初始化,也可以通过arcpy.mapping.ListLayers(map_document_or_layer, {wildcard}, {data_frame})函数获取。

lyr1=arcpy.mapping.Layer(r" F:\GeoData\ChinaArea\Province.lyr")

df.addLayer(lyr1)

lyr2=arcpy.mapping.ListLayer(mxd,"",df)[0]

DataDrivenPages类需要配合ArcMap中的Data Driven Pages工具使用。用于一个矢量文件内的全部或部分图斑每个出一张图的情况。

TextElement类用于操作地图上的文字,比如图名、页数。通过arcpy.mapping.ListLayoutElements (map_document, {element_type}, {wildcard})函数获取。

txtElm=arcpy.mapping.ListLayoutElements(mxd,"TEXT_ELEMENT")[0]

常见的出图模式有两种:一个矢量文件里每个图斑出一张图,一个文件夹下每个矢量文件出一张图。

每个图斑出一张图:

这种情况有Data Driven Pages工具配合最好。打开ArcMap的Customize->Toolbars->Data Driven Pages,设置好图层、名称字段、排序字段、显示范围和比例尺,保存地图。

# coding:utf-8

import arcpy

 

mxd=arcpy.mapping.MapDocument(r"F:\GeoData\ChinaArea\ChinaVector.mxd")

for pageNum in range(1,mxd.dataDrivenPages.pageCount):

     mxd.dataDrivenPages.currentPageID=pageNum

     mapName=mxd.dataDrivenPages.pageRow.getValue(mxd.dataDrivenPages.pageNameField.name)

     print mapName

     arcpy.mapping.ExportToPNG(mxd,r"F:\GeoData\ChinaArea\Province\\"+mapName+".png")

print 'ok'

一个文件夹下的每个矢量文件出一张图:

# coding:utf-8

import arcpy

import os

 

def GetShpfiles(shpdir):

     shpfiles=[]

     allfiles=os.listdir(shpdir)

     for file in allfiles:

          if os.path.isfile(file):

              if file.endswith('.shp'):

                   shpfiles.append(file)

          else:

              shpfiles.extend(GetShpfiles(file))

     return shpfiles

 

allshps=GetShpfiles(r"F:\GeoData\ChinaArea\Province")

mxd=arcpy.mapping.MapDocument(r"F:\GeoData\ChinaArea\ChinaVector.mxd")

lyr=arcpy.mapping.ListLayer(mxd)[0]

for shp in allshps:

     paths=os.path.split(shp)

     print paths[1]

     lyr.replaceDataSource(paths[0],"SHAPEFILE_WORKSPACE",paths[1])

     arcpy.mapping.ExportToPNG(mxd,r"F:\GeoData\ChinaArea\Province\\"+paths[1]+".png")

print 'ok'

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持PHP中文网。

更多python使用arcpy.mapping模块批量出图方法相关文章请关注PHP中文网!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools