Home > Article > Backend Development > Detailed explanation of cdn log analysis through the pandas library in Python
Preface
I recently encountered a need at work, which is to filter some data based on CDN logs, such as traffic, status code statistics, TOP IP, URL, UA , Referer, etc. In the past, the bash shell was used to implement this. However, when the log volume is large, the number of log files is gigabytes, and the number of lines reaches tens of billions, processing through the shell is not enough and the processing time is too long. So I studied the use of Python pandas, a data processing library. Ten million lines of logs are processed in about 40 seconds.
Code
#!/usr/bin/python # -*- coding: utf-8 -*- # sudo pip install pandas __author__ = 'Loya Chen' import sys import pandas as pd from collections import OrderedDict """ Description: This script is used to analyse qiniu cdn log. ================================================================================ 日志格式 IP - ResponseTime [time +0800] "Method URL HTTP/1.1" code size "referer" "UA" ================================================================================ 日志示例 [0] [1][2] [3] [4] [5] 101.226.66.179 - 68 [16/Nov/2016:04:36:40 +0800] "GET http://www.php.cn/ -" [6] [7] [8] [9] 200 502 "-" "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)" ================================================================================ """ if len(sys.argv) != 2: print('Usage:', sys.argv[0], 'file_of_log') exit() else: log_file = sys.argv[1] # 需统计字段对应的日志位置 ip = 0 url = 5 status_code = 6 size = 7 referer = 8 ua = 9 # 将日志读入DataFrame reader = pd.read_table(log_file, sep=' ', names=[i for i in range(10)], iterator=True) loop = True chunkSize = 10000000 chunks = [] while loop: try: chunk = reader.get_chunk(chunkSize) chunks.append(chunk) except StopIteration: #Iteration is stopped. loop = False df = pd.concat(chunks, ignore_index=True) byte_sum = df[size].sum() #流量统计 top_status_code = pd.DataFrame(df[6].value_counts()) #状态码统计 top_ip = df[ip].value_counts().head(10) #TOP IP top_referer = df[referer].value_counts().head(10) #TOP Referer top_ua = df[ua].value_counts().head(10) #TOP User-Agent top_status_code['persent'] = pd.DataFrame(top_status_code/top_status_code.sum()*100) top_url = df[url].value_counts().head(10) #TOP URL top_url_byte = df[[url,size]].groupby(url).sum().apply(lambda x:x.astype(float)/1024/1024) \ .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最大的URL top_ip_byte = df[[ip,size]].groupby(ip).sum().apply(lambda x:x.astype(float)/1024/1024) \ .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最多的IP # 将结果有序存入字典 result = OrderedDict([("流量总计[单位:GB]:" , byte_sum/1024/1024/1024), ("状态码统计[次数|百分比]:" , top_status_code), ("IP TOP 10:" , top_ip), ("Referer TOP 10:" , top_referer), ("UA TOP 10:" , top_ua), ("URL TOP 10:" , top_url), ("请求流量最大的URL TOP 10[单位:MB]:" , top_url_byte), ("请求流量最大的IP TOP 10[单位:MB]:" , top_ip_byte) ]) # 输出结果 for k,v in result.items(): print(k) print(v) print('='*80)
pandas study notes
There are two basic data structures in Pandas, Series and Dataframe. A Series is an object similar to a one-dimensional array, consisting of a set of data and an index. Dataframe is a tabular data structure with both row and column indexes.
from pandas import Series, DataFrame import pandas as pd
Series
In [1]: obj = Series([4, 7, -5, 3]) In [2]: obj Out[2]: 0 4 1 7 2 -5 3 3
The string representation of Series is: index on the left and value on the right. When no index is specified, an integer index ranging from 0 to N-1 (N is the length of the data) will be automatically created. The array representation and index object can be obtained through the values and index properties of the Series:
In [3]: obj.values Out[3]: array([ 4, 7, -5, 3]) In [4]: obj.index Out[4]: RangeIndex(start=0, stop=4, step=1)
Usually the index is specified when creating the Series:
In [5]: obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c']) In [6]: obj2 Out[6]: d 4 b 7 a -5 c 3
Get a single or a group of values in the Series through the index :
In [7]: obj2['a'] Out[7]: -5 In [8]: obj2[['c','d']] Out[8]: c 3 d 4
Sort
In [9]: obj2.sort_index() Out[9]: a -5 b 7 c 3 d 4 In [10]: obj2.sort_values() Out[10]: a -5 c 3 d 4 b 7
Filter operation
In [11]: obj2[obj2 > 0] Out[11]: d 4 b 7 c 3 In [12]: obj2 * 2 Out[12]: d 8 b 14 a -10 c 6
Member
In [13]: 'b' in obj2 Out[13]: True In [14]: 'e' in obj2 Out[14]: False
Create Series through dictionary
In [15]: sdata = {'Shanghai':35000, 'Beijing':40000, 'Nanjing':26000, 'Hangzhou':30000} In [16]: obj3 = Series(sdata) In [17]: obj3 Out[17]: Beijing 40000 Hangzhou 30000 Nanjing 26000 Shanghai 35000
If only one dictionary is passed in , then the index in the result Series is the key of the original dictionary (ordered arrangement)
In [18]: states = ['Beijing', 'Hangzhou', 'Shanghai', 'Suzhou'] In [19]: obj4 = Series(sdata, index=states) In [20]: obj4 Out[20]: Beijing 40000.0 Hangzhou 30000.0 Shanghai 35000.0 Suzhou NaN
When specifying index, the three values in sdata that match the states index will be found and placed in the response position on, but since the sdata value corresponding to 'Suzhou' cannot be found, the result is NaN (not a number). The isnull and notnull functions in pandas used to represent missing or NA values
pandas can be used For detecting missing data:
In [21]: pd.isnull(obj4) Out[21]: Beijing False Hangzhou False Shanghai False Suzhou True In [22]: pd.notnull(obj4) Out[22]: Beijing True Hangzhou True Shanghai True Suzhou False
Series also has similar instance methods
In [23]: obj4.isnull() Out[23]: Beijing False Hangzhou False Shanghai False Suzhou True
An important function of Series is to automatically align data with different indexes during data operations
In [24]: obj3 Out[24]: Beijing 40000 Hangzhou 30000 Nanjing 26000 Shanghai 35000 In [25]: obj4 Out[25]: Beijing 40000.0 Hangzhou 30000.0 Shanghai 35000.0 Suzhou NaN In [26]: obj3 + obj4 Out[26]: Beijing 80000.0 Hangzhou 60000.0 Nanjing NaN Shanghai 70000.0 Suzhou NaN
The index of the Series can be modified in place by copying
In [27]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan'] In [28]: obj Out[28]: Bob 4 Steve 7 Jeff -5 Ryan 3
DataFrame
pandas reads the file
In [29]: df = pd.read_table('pandas_test.txt',sep=' ', names=['name', 'age']) In [30]: df Out[30]: name age 0 Bob 26 1 Loya 22 2 Denny 20 3 Mars 25
DataFrame column selection
df[name]
In [31]: df['name'] Out[31]: 0 Bob 1 Loya 2 Denny 3 Mars Name: name, dtype: object
DataFrame row selection
df.iloc[0,:] #第一个参数是第几行,第二个参数是列。这里指第0行全部列 df.iloc[:,0] #全部行,第0列
In [32]: df.iloc[0,:] Out[32]: name Bob age 26 Name: 0, dtype: object In [33]: df.iloc[:,0] Out[33]: 0 Bob 1 Loya 2 Denny 3 Mars Name: name, dtype: object
Get an element, you can use iloc, the faster way is iat
In [34]: df.iloc[1,1] Out[34]: 22 In [35]: df.iat[1,1] Out[35]: 22
DataFrame block selection
In [36]: df.loc[1:2,['name','age']] Out[36]: name age 1 Loya 22 2 Denny 20
Filter rows based on conditions
Add judgment conditions in square brackets to filter rows. The conditions must return True or False
In [37]: df[(df.index >= 1) & (df.index <= 3)] Out[37]: name age city 1 Loya 22 Shanghai 2 Denny 20 Hangzhou 3 Mars 25 Nanjing In [38]: df[df['age'] > 22] Out[38]: name age city 0 Bob 26 Beijing 3 Mars 25 Nanjing
Add columns
In [39]: df['city'] = ['Beijing', 'Shanghai', 'Hangzhou', 'Nanjing'] In [40]: df Out[40]: name age city 0 Bob 26 Beijing 1 Loya 22 Shanghai 2 Denny 20 Hangzhou 3 Mars 25 Nanjing
Sort
Sort by specified columns
In [41]: df.sort_values(by='age') Out[41]: name age city 2 Denny 20 Hangzhou 1 Loya 22 Shanghai 3 Mars 25 Nanjing 0 Bob 26 Beijing
# 引入numpy 构建 DataFrame import numpy as np
In [42]: df = pd.DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'], columns=['d', 'a', 'b', 'c']) In [43]: df Out[43]: d a b c three 0 1 2 3 one 4 5 6 7
# 以索引排序 In [44]: df.sort_index() Out[44]: d a b c one 4 5 6 7 three 0 1 2 3 In [45]: df.sort_index(axis=1) Out[45]: a b c d three 1 2 3 0 one 5 6 7 4 # 降序 In [46]: df.sort_index(axis=1, ascending=False) Out[46]: d c b a three 0 3 2 1 one 4 7 6 5
View
# 查看表头5行 df.head(5) # 查看表末5行 df.tail(5) # 查看列的名字 In [47]: df.columns Out[47]: Index(['name', 'age', 'city'], dtype='object') # 查看表格当前的值 In [48]: df.values Out[48]: array([['Bob', 26, 'Beijing'], ['Loya', 22, 'Shanghai'], ['Denny', 20, 'Hangzhou'], ['Mars', 25, 'Nanjing']], dtype=object)
Transpose
df.T Out[49]: 0 1 2 3 name Bob Loya Denny Mars age 26 22 20 25 city Beijing Shanghai Hangzhou Nanjing
Use isin
In [50]: df2 = df.copy() In [51]: df2[df2['city'].isin(['Shanghai','Nanjing'])] Out[52]: name age city 1 Loya 22 Shanghai 3 Mars 25 Nanjing
Operation:
In [53]: df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]], ...: index=['a', 'b', 'c', 'd'], columns=['one', 'two']) In [54]: df Out[54]: one two a 1.40 NaN b 7.10 -4.5 c NaN NaN d 0.75 -1.3
#按列求和 In [55]: df.sum() Out[55]: one 9.25 two -5.80 # 按行求和 In [56]: df.sum(axis=1) Out[56]: a 1.40 b 2.60 c NaN d -0.55
group
group refers to the following steps:
In [57]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ....: 'foo', 'bar', 'foo', 'foo'], ....: 'B' : ['one', 'one', 'two', 'three', ....: 'two', 'two', 'one', 'three'], ....: 'C' : np.random.randn(8), ....: 'D' : np.random.randn(8)}) ....: In [58]: df Out[58]: A B C D 0 foo one -1.202872 -0.055224 1 bar one -1.814470 2.395985 2 foo two 1.018601 1.552825 3 bar three -0.595447 0.166599 4 foo two 1.395433 0.047609 5 bar two -0.392670 -0.136473 6 foo one 0.007207 -0.561757 7 foo three 1.928123 -1.623033
group and then apply sum function
In [59]: df.groupby('A').sum() Out[59]: C D A bar -2.802588 2.42611 foo 3.146492 -0.63958 In [60]: df.groupby(['A','B']).sum() Out[60]: C D A B bar one -1.814470 2.395985 three -0.595447 0.166599 two -0.392670 -0.136473 foo one -1.195665 -0.616981 three 1.928123 -1.623033 two 2.414034 1.600434
For more detailed explanations of cdn log analysis through the pandas library in Python, please pay attention to the PHP Chinese website!
Related articles: