


Detailed explanation of several algorithm codes for implementing load balancing in Java
This article mainly introduces several algorithm codes that explain Java's load balancing in detail. The editor thinks it is quite good, so I will share it with you now and give it as a reference. Let’s follow the editor and take a look.
This article mainly introduces several algorithms for Java to achieve load balancing, as follows:
Polling:
package class2.zookeeper.loadbalance; import java.util.ArrayList; import java.util.HashMap; import java.util.Map; import java.util.Set; /** * 負載均衡算法,輪詢法 * @author guoy * */ public class TestRoundRobin { static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>(); static{ serverWeigthMap.put("192.168.1.12", 1); serverWeigthMap.put("192.168.1.13", 1); serverWeigthMap.put("192.168.1.14", 2); serverWeigthMap.put("192.168.1.15", 2); serverWeigthMap.put("192.168.1.16", 3); serverWeigthMap.put("192.168.1.17", 3); serverWeigthMap.put("192.168.1.18", 1); serverWeigthMap.put("192.168.1.19", 2); } Integer pos = 0; public String roundRobin() { //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題 Map<String,Integer> serverMap = new HashMap<String,Integer>(); serverMap.putAll(serverWeigthMap); //獲取ip列表list Set<String> keySet = serverMap.keySet(); ArrayList<String> keyList = new ArrayList<String>(); keyList.addAll(keySet); String server = null; synchronized (pos) { if(pos >=keySet.size()){ pos = 0; } server = keyList.get(pos); pos ++; } return server; } public static void main(String[] args) { TestRoundRobin robin = new TestRoundRobin(); for (int i = 0; i < 20; i++) { String serverIp = robin.roundRobin(); System.out.println(serverIp); } } }
Weighted polling:
package class2.zookeeper.loadbalance; import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.Random; import java.util.Set; /** * 加權隨機载均衡算法 * @author guoy * */ public class TestWeightRandom { static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>(); static{ serverWeigthMap.put("192.168.1.12", 1); serverWeigthMap.put("192.168.1.13", 1); serverWeigthMap.put("192.168.1.14", 2); serverWeigthMap.put("192.168.1.15", 2); serverWeigthMap.put("192.168.1.16", 3); serverWeigthMap.put("192.168.1.17", 3); serverWeigthMap.put("192.168.1.18", 1); serverWeigthMap.put("192.168.1.19", 2); } public static String weightRandom() { //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題 Map<String,Integer> serverMap = new HashMap<String,Integer>(); serverMap.putAll(serverWeigthMap); //獲取ip列表list Set<String> keySet = serverMap.keySet(); Iterator<String> it = keySet.iterator(); List<String> serverList = new ArrayList<String>(); while (it.hasNext()) { String server = it.next(); Integer weight = serverMap.get(server); for (int i = 0; i < weight; i++) { serverList.add(server); } } Random random = new Random(); int randomPos = random.nextInt(serverList.size()); String server = serverList.get(randomPos); return server; } public static void main(String[] args) { String serverIp = weightRandom(); System.out.println(serverIp); } }
Random:
package class2.zookeeper.loadbalance; import java.util.ArrayList; import java.util.HashMap; import java.util.Map; import java.util.Random; import java.util.Set; /** * 隨機负载均衡算法 * @author guoy * */ public class TestRandom { static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>(); static{ serverWeigthMap.put("192.168.1.12", 1); serverWeigthMap.put("192.168.1.13", 1); serverWeigthMap.put("192.168.1.14", 2); serverWeigthMap.put("192.168.1.15", 2); serverWeigthMap.put("192.168.1.16", 3); serverWeigthMap.put("192.168.1.17", 3); serverWeigthMap.put("192.168.1.18", 1); serverWeigthMap.put("192.168.1.19", 2); } public static String random() { //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題 Map<String,Integer> serverMap = new HashMap<String,Integer>(); serverMap.putAll(serverWeigthMap); //獲取ip列表list Set<String> keySet = serverMap.keySet(); ArrayList<String> keyList = new ArrayList<String>(); keyList.addAll(keySet); Random random = new Random(); int randomPos = random.nextInt(keyList.size()); String server = keyList.get(randomPos); return server; } public static void main(String[] args) { String serverIp = random(); System.out.println(serverIp); } }
Weighted random:
package class2.zookeeper.loadbalance; import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.Random; import java.util.Set; /** * 加權隨機载均衡算法 * @author guoy * */ public class TestWeightRandom { static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>(); static{ serverWeigthMap.put("192.168.1.12", 1); serverWeigthMap.put("192.168.1.13", 1); serverWeigthMap.put("192.168.1.14", 2); serverWeigthMap.put("192.168.1.15", 2); serverWeigthMap.put("192.168.1.16", 3); serverWeigthMap.put("192.168.1.17", 3); serverWeigthMap.put("192.168.1.18", 1); serverWeigthMap.put("192.168.1.19", 2); } public static String weightRandom() { //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題 Map<String,Integer> serverMap = new HashMap<String,Integer>(); serverMap.putAll(serverWeigthMap); //獲取ip列表list Set<String> keySet = serverMap.keySet(); Iterator<String> it = keySet.iterator(); List<String> serverList = new ArrayList<String>(); while (it.hasNext()) { String server = it.next(); Integer weight = serverMap.get(server); for (int i = 0; i < weight; i++) { serverList.add(server); } } Random random = new Random(); int randomPos = random.nextInt(serverList.size()); String server = serverList.get(randomPos); return server; } public static void main(String[] args) { String serverIp = weightRandom(); System.out.println(serverIp); } }
ip hash:
package class2.zookeeper.loadbalance; import java.util.ArrayList; import java.util.HashMap; import java.util.Map; import java.util.Set; /** * 负载均衡 ip_hash算法 * @author guoy * */ public class TestIpHash { static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>(); static{ serverWeigthMap.put("192.168.1.12", 1); serverWeigthMap.put("192.168.1.13", 1); serverWeigthMap.put("192.168.1.14", 2); serverWeigthMap.put("192.168.1.15", 2); serverWeigthMap.put("192.168.1.16", 3); serverWeigthMap.put("192.168.1.17", 3); serverWeigthMap.put("192.168.1.18", 1); serverWeigthMap.put("192.168.1.19", 2); } /** * 获取请求服务器地址 * @param remoteIp 负载均衡服务器ip * @return */ public static String ipHash(String remoteIp) { //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題 Map<String,Integer> serverMap = new HashMap<String,Integer>(); serverMap.putAll(serverWeigthMap); //獲取ip列表list Set<String> keySet = serverMap.keySet(); ArrayList<String> keyList = new ArrayList<String>(); keyList.addAll(keySet); int hashCode =remoteIp.hashCode(); int serverListSize = keyList.size(); int serverPos = hashCode % serverListSize; return keyList.get(serverPos); } public static void main(String[] args) { String serverIp = ipHash("192.168.1.12"); System.out.println(serverIp); } }
The above is the detailed explanation of several algorithm codes for Java to achieve load balancing. For more related content, please pay attention to the PHP Chinese website (www.php.cn)!

There are subtle differences in Java's performance on different operating systems. 1) The JVM implementations are different, such as HotSpot and OpenJDK, which affect performance and garbage collection. 2) The file system structure and path separator are different, so it needs to be processed using the Java standard library. 3) Differential implementation of network protocols affects network performance. 4) The appearance and behavior of GUI components vary on different systems. By using standard libraries and virtual machine testing, the impact of these differences can be reduced and Java programs can be ensured to run smoothly.

Javaoffersrobustobject-orientedprogramming(OOP)andtop-notchsecurityfeatures.1)OOPinJavaincludesclasses,objects,inheritance,polymorphism,andencapsulation,enablingflexibleandmaintainablesystems.2)SecurityfeaturesincludetheJavaVirtualMachine(JVM)forsand

JavaScriptandJavahavedistinctstrengths:JavaScriptexcelsindynamictypingandasynchronousprogramming,whileJavaisrobustwithstrongOOPandtyping.1)JavaScript'sdynamicnatureallowsforrapiddevelopmentandprototyping,withasync/awaitfornon-blockingI/O.2)Java'sOOPf

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM)andbytecode.1)TheJVMinterpretsbytecode,allowingthesamecodetorunonanyplatformwithaJVM.2)BytecodeiscompiledfromJavasourcecodeandisplatform-independent.However,limitationsincludepotentialp

Java'splatformindependencemeansapplicationscanrunonanyplatformwithaJVM,enabling"WriteOnce,RunAnywhere."However,challengesincludeJVMinconsistencies,libraryportability,andperformancevariations.Toaddressthese:1)Usecross-platformtestingtools,2)

JVM'sperformanceiscompetitivewithotherruntimes,offeringabalanceofspeed,safety,andproductivity.1)JVMusesJITcompilationfordynamicoptimizations.2)C offersnativeperformancebutlacksJVM'ssafetyfeatures.3)Pythonisslowerbuteasiertouse.4)JavaScript'sJITisles

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),allowingcodetorunonanyplatformwithaJVM.1)Codeiscompiledintobytecode,notmachine-specificcode.2)BytecodeisinterpretedbytheJVM,enablingcross-platformexecution.3)Developersshouldtestacross

TheJVMisanabstractcomputingmachinecrucialforrunningJavaprogramsduetoitsplatform-independentarchitecture.Itincludes:1)ClassLoaderforloadingclasses,2)RuntimeDataAreafordatastorage,3)ExecutionEnginewithInterpreter,JITCompiler,andGarbageCollectorforbytec


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools
