Task asynchronousization
Open the browser, enter the address, press Enter, and open the page. So an HTTP request (request) is sent from the client to the server, and the server processes the request and returns the response (response) content.
We browse the web every day and send large and small requests to the server. Sometimes, when the server receives a request, it will find that it also needs to send a request to another server, or the server also needs to do something else, so the request they originally sent is blocked, that is, it has to wait for the server to complete other things.
More often, the additional things done by the server do not require the client to wait. At this time, these additional things can be done asynchronously. There are many tools for doing asynchronous tasks. The main principle is still to process notification messages. For notification messages, a queue structure is usually adopted. Produce and consume messages for communication and business implementation.
Production, consumption and queue
The implementation of the above asynchronous tasks can be abstracted into the producer consumption model. Just like a restaurant, the chef is cooking and the foodies are eating. If the chef cooks a lot and cannot sell all the items for the time being, the chef will take a break; if there are many customers and the chef is busy non-stop, the customers need to wait slowly. There are many ways to implement producers and consumers. Here is a small example using the Python standard library Queue:
import random import time from Queue import Queue from threading import Thread queue = Queue(10) class Producer(Thread): def run(self): while True: elem = random.randrange(9) queue.put(elem) print "厨师 {} 做了 {} 饭 --- 还剩 {} 饭没卖完".format(self.name, elem, queue.qsize()) time.sleep(random.random()) class Consumer(Thread): def run(self): while True: elem = queue.get() print "吃货{} 吃了 {} 饭 --- 还有 {} 饭可以吃".format(self.name, elem, queue.qsize()) time.sleep(random.random()) def main(): for i in range(3): p = Producer() p.start() for i in range(2): c = Consumer() c.start() if __name__ == '__main__': main()
The approximate output is as follows:
厨师 Thread-1 做了 1 饭 --- 还剩 1 饭没卖完 厨师 Thread-2 做了 8 饭 --- 还剩 2 饭没卖完 厨师 Thread-3 做了 3 饭 --- 还剩 3 饭没卖完 吃货Thread-4 吃了 1 饭 --- 还有 2 饭可以吃 吃货Thread-5 吃了 8 饭 --- 还有 1 饭可以吃 吃货Thread-4 吃了 3 饭 --- 还有 0 饭可以吃 厨师 Thread-1 做了 0 饭 --- 还剩 1 饭没卖完 厨师 Thread-2 做了 0 饭 --- 还剩 2 饭没卖完 厨师 Thread-1 做了 1 饭 --- 还剩 3 饭没卖完 厨师 Thread-1 做了 1 饭 --- 还剩 4 饭没卖完 吃货Thread-4 吃了 0 饭 --- 还有 3 饭可以吃 厨师 Thread-3 做了 3 饭 --- 还剩 4 饭没卖完 吃货Thread-5 吃了 0 饭 --- 还有 3 饭可以吃 吃货Thread-5 吃了 1 饭 --- 还有 2 饭可以吃 厨师 Thread-2 做了 8 饭 --- 还剩 3 饭没卖完 厨师 Thread-2 做了 8 饭 --- 还剩 4 饭没卖完
Redis Queue
Python has a built-in useful queue structure. We can also use redis to implement similar operations. and do a simple asynchronous task.
Redis provides two ways to do message queues. One is to use the producer consumption model, and the other is the publish-subscriber model. The former will let one or more clients monitor the message queue. Once the message arrives, the consumer will consume it immediately. Whoever grabs it first will be the winner. If there is no message in the queue, the consumer will continue to listen. The latter is also one or more clients subscribing to the message channel. As long as the publisher publishes the message, all subscribers can receive the message and the subscribers are pinged.
Production and consumption mode
Mainly uses blpop provided by redis to obtain queue data. If there is no data in the queue, it will block and wait, that is, listening.
import redis class Task(object): def __init__(self): self.rcon = redis.StrictRedis(host='localhost', db=5) self.queue = 'task:prodcons:queue' def listen_task(self): while True: task = self.rcon.blpop(self.queue, 0)[1] print "Task get", task if __name__ == '__main__': print 'listen task queue' Task().listen_task()
Publish and subscribe mode
Using the pubsub function of redis, the subscriber subscribes to the channel, and the publisher publishes the message to the channel. A channel is a message queue.
import redis class Task(object): def __init__(self): self.rcon = redis.StrictRedis(host='localhost', db=5) self.ps = self.rcon.pubsub() self.ps.subscribe('task:pubsub:channel') def listen_task(self): for i in self.ps.listen(): if i['type'] == 'message': print "Task get", i['data'] if __name__ == '__main__': print 'listen task channel' Task().listen_task()
Flask entrance
We have implemented two back-end services for asynchronous tasks respectively. Start them directly and you can monitor them. Messages from the redis queue or channel. The simple test is as follows:
import redis import random import logging from flask import Flask, redirect app = Flask(__name__) rcon = redis.StrictRedis(host='localhost', db=5) prodcons_queue = 'task:prodcons:queue' pubsub_channel = 'task:pubsub:channel' @app.route('/') def index(): html = """ <br> <center><h3 id="Redis-nbsp-Message-nbsp-Queue">Redis Message Queue</h3> <br> <a href="/prodcons">生产消费者模式</a> <br> <br> <a href="/pubsub">发布订阅者模式</a> </center> """ return html @app.route('/prodcons') def prodcons(): elem = random.randrange(10) rcon.lpush(prodcons_queue, elem) logging.info("lpush {} -- {}".format(prodcons_queue, elem)) return redirect('/') @app.route('/pubsub') def pubsub(): ps = rcon.pubsub() ps.subscribe(pubsub_channel) elem = random.randrange(10) rcon.publish(pubsub_channel, elem) return redirect('/') if __name__ == '__main__': app.run(debug=True)
Start the script and use
siege -c10 -r 5 http://127.0.0.1:5000/prodcons siege -c10 -r 5 http://127.0.0.1:5000/pubsub
to start the script respectively. Asynchronous messages are seen in the listened script input. In asynchronous tasks, you can perform some time-consuming operations. Of course, these current methods do not know the asynchronous execution results. If you need to know the asynchronous execution results, you can consider designing coroutine tasks or using some tools such as RQ or celery.
For more articles related to Python’s Flask framework application calling Redis queue data, please pay attention to the PHP Chinese website!

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 English version
Recommended: Win version, supports code prompts!

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Linux new version
SublimeText3 Linux latest version