search
HomeBackend DevelopmentPython TutorialPython's Flask framework application calls Redis queue data

Task asynchronousization

Open the browser, enter the address, press Enter, and open the page. So an HTTP request (request) is sent from the client to the server, and the server processes the request and returns the response (response) content.

We browse the web every day and send large and small requests to the server. Sometimes, when the server receives a request, it will find that it also needs to send a request to another server, or the server also needs to do something else, so the request they originally sent is blocked, that is, it has to wait for the server to complete other things.

More often, the additional things done by the server do not require the client to wait. At this time, these additional things can be done asynchronously. There are many tools for doing asynchronous tasks. The main principle is still to process notification messages. For notification messages, a queue structure is usually adopted. Produce and consume messages for communication and business implementation.

Production, consumption and queue
The implementation of the above asynchronous tasks can be abstracted into the producer consumption model. Just like a restaurant, the chef is cooking and the foodies are eating. If the chef cooks a lot and cannot sell all the items for the time being, the chef will take a break; if there are many customers and the chef is busy non-stop, the customers need to wait slowly. There are many ways to implement producers and consumers. Here is a small example using the Python standard library Queue:

import random
import time
from Queue import Queue
from threading import Thread

queue = Queue(10)

class Producer(Thread):
  def run(self):
    while True:
      elem = random.randrange(9)
      queue.put(elem)
      print "厨师 {} 做了 {} 饭 --- 还剩 {} 饭没卖完".format(self.name, elem, queue.qsize())
      time.sleep(random.random())

class Consumer(Thread):
  def run(self):
    while True:
      elem = queue.get()
      print "吃货{} 吃了 {} 饭 --- 还有 {} 饭可以吃".format(self.name, elem, queue.qsize())
      time.sleep(random.random())

def main():
  for i in range(3):
    p = Producer()
    p.start()
  for i in range(2):
    c = Consumer()
    c.start()

if __name__ == '__main__':
  main()

The approximate output is as follows:

厨师 Thread-1 做了 1 饭 --- 还剩 1 饭没卖完
厨师 Thread-2 做了 8 饭 --- 还剩 2 饭没卖完
厨师 Thread-3 做了 3 饭 --- 还剩 3 饭没卖完
吃货Thread-4 吃了 1 饭 --- 还有 2 饭可以吃
吃货Thread-5 吃了 8 饭 --- 还有 1 饭可以吃
吃货Thread-4 吃了 3 饭 --- 还有 0 饭可以吃
厨师 Thread-1 做了 0 饭 --- 还剩 1 饭没卖完
厨师 Thread-2 做了 0 饭 --- 还剩 2 饭没卖完
厨师 Thread-1 做了 1 饭 --- 还剩 3 饭没卖完
厨师 Thread-1 做了 1 饭 --- 还剩 4 饭没卖完
吃货Thread-4 吃了 0 饭 --- 还有 3 饭可以吃
厨师 Thread-3 做了 3 饭 --- 还剩 4 饭没卖完
吃货Thread-5 吃了 0 饭 --- 还有 3 饭可以吃
吃货Thread-5 吃了 1 饭 --- 还有 2 饭可以吃
厨师 Thread-2 做了 8 饭 --- 还剩 3 饭没卖完
厨师 Thread-2 做了 8 饭 --- 还剩 4 饭没卖完

Redis Queue
Python has a built-in useful queue structure. We can also use redis to implement similar operations. and do a simple asynchronous task.

Redis provides two ways to do message queues. One is to use the producer consumption model, and the other is the publish-subscriber model. The former will let one or more clients monitor the message queue. Once the message arrives, the consumer will consume it immediately. Whoever grabs it first will be the winner. If there is no message in the queue, the consumer will continue to listen. The latter is also one or more clients subscribing to the message channel. As long as the publisher publishes the message, all subscribers can receive the message and the subscribers are pinged.

Production and consumption mode
Mainly uses blpop provided by redis to obtain queue data. If there is no data in the queue, it will block and wait, that is, listening.

import redis

class Task(object):
  def __init__(self):
    self.rcon = redis.StrictRedis(host='localhost', db=5)
    self.queue = 'task:prodcons:queue'

  def listen_task(self):
    while True:
      task = self.rcon.blpop(self.queue, 0)[1]
      print "Task get", task

if __name__ == '__main__':
  print 'listen task queue'
  Task().listen_task()

Publish and subscribe mode
Using the pubsub function of redis, the subscriber subscribes to the channel, and the publisher publishes the message to the channel. A channel is a message queue.

import redis


class Task(object):

  def __init__(self):
    self.rcon = redis.StrictRedis(host='localhost', db=5)
    self.ps = self.rcon.pubsub()
    self.ps.subscribe('task:pubsub:channel')

  def listen_task(self):
    for i in self.ps.listen():
      if i['type'] == 'message':
        print "Task get", i['data']

if __name__ == '__main__':
  print 'listen task channel'
  Task().listen_task()

Flask entrance
We have implemented two back-end services for asynchronous tasks respectively. Start them directly and you can monitor them. Messages from the redis queue or channel. The simple test is as follows:

import redis
import random
import logging
from flask import Flask, redirect

app = Flask(__name__)

rcon = redis.StrictRedis(host='localhost', db=5)
prodcons_queue = 'task:prodcons:queue'
pubsub_channel = 'task:pubsub:channel'

@app.route('/')
def index():

  html = """
<br>
<center><h3 id="Redis-nbsp-Message-nbsp-Queue">Redis Message Queue</h3>
<br>
<a href="/prodcons">生产消费者模式</a>
<br>
<br>
<a href="/pubsub">发布订阅者模式</a>
</center>
"""
  return html


@app.route(&#39;/prodcons&#39;)
def prodcons():
  elem = random.randrange(10)
  rcon.lpush(prodcons_queue, elem)
  logging.info("lpush {} -- {}".format(prodcons_queue, elem))
  return redirect(&#39;/&#39;)

@app.route(&#39;/pubsub&#39;)
def pubsub():
  ps = rcon.pubsub()
  ps.subscribe(pubsub_channel)
  elem = random.randrange(10)
  rcon.publish(pubsub_channel, elem)
  return redirect(&#39;/&#39;)

if __name__ == &#39;__main__&#39;:
  app.run(debug=True)

Start the script and use

siege -c10 -r 5 http://127.0.0.1:5000/prodcons
siege -c10 -r 5 http://127.0.0.1:5000/pubsub

to start the script respectively. Asynchronous messages are seen in the listened script input. In asynchronous tasks, you can perform some time-consuming operations. Of course, these current methods do not know the asynchronous execution results. If you need to know the asynchronous execution results, you can consider designing coroutine tasks or using some tools such as RQ or celery.

For more articles related to Python’s Flask framework application calling Redis queue data, please pay attention to the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Merging Lists in Python: Choosing the Right MethodMerging Lists in Python: Choosing the Right MethodMay 14, 2025 am 12:11 AM

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

How to concatenate two lists in python 3?How to concatenate two lists in python 3?May 14, 2025 am 12:09 AM

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Python concatenate list stringsPython concatenate list stringsMay 14, 2025 am 12:08 AM

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

Python execution, what is that?Python execution, what is that?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Python: what are the key featuresPython: what are the key featuresMay 14, 2025 am 12:02 AM

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft