


SocketServer creates a network service framework. It defines classes to handle synchronous network requests over TCP, UDP, UNIX streams and UNIX datagrams.
1. Server Types
There are five different server classes in SocketServer.
1.BaseServer defines the API, and it is not used for instantiation and direct use.
2.TCPServer is used for TCP/IP socket communication.
3.UDPServer uses datagram sockets.
4.UnixStreamServer and UnixDatagramServer use Unix-domain sockets and are intelligently used on unix platforms.
2. Server Objects
Build a server through which the requested address and requested processing class (not instance) can be monitored.
1.class SocketServer.BaseServer
This is the super class of all server objects in the module. It defines the interface and most of the implementation is completed in subclasses.
2.BaseServer.fileno
Returns an integer file descriptor to indicate which server is listening. This function is most commonly passed to select.select(), allowing multiple services to monitor the same process.
3.BaseServer.handle_request
To process a single request, this function will call the following methods sequentially. get_request(), verify_request and proccess_request.
The user provides the handle() method and throws an exception, then the handle_error() method will be called.
If no request is received within self.timeout, handle_timeout() and handle_request() will return.
4.BaseServer.serve_forever
BaseServer.serve_forever(poll_interval=0.5), handles requests until a clear shutdown() request. The rotation training is closed every poll_interval time. Ignore self.timeout. If you need to use scheduled tasks, you need to use other threads.
5.BaseServer.shutdown
Tell serve_forever() to stop the loop.
6.BaseServer.RequestHandlerClass
User request handler class, create an instance of this class for each request.
3. Implementing a Server
If you create a server, it can usually reuse existing classes and simply provide a custom request handling class. There are several BaseServer methods to override a subclass if that doesn't meet your needs.
1.verify_request(reqeust, client_address): Must return a Boolean value. If True is returned, the request will be processed. If False is returned, the request will be rejected. This function can be overridden to implement access control services.
2.process_request(request, client_address): Call finish_request to create an instance of RequestHandlerClass(). If needed, this function can create a new process or coroutine to handle the request.
3.finish_request(request, client_address): Create a request processing instance. Call handle() to handle the request.
4. Request Handlers
Request handlers do most of the work to receive incoming requests and decide what action to take. The handler is responsible for implementing the socket layer on the "protocol" (for example, HTTP or XML-RPC). Reads the request data from the incoming request handler, processes it, and writes a response. There are three ways to override this.
1.setup(): Prepare the request handler for the request, which is initialized and run before the handle.
2.handle(): Do the real request work. Parse incoming requests, process data and return responses.
3.finish(): Clean up the setup() created at any time.
5. Example
The following example shows tcp, udp and asynchronous
1.TCPServer example
import SocketServer class MyHandler(SocketServer.BaseRequestHandler): def handle(self): self.data = self.request.recv(1024).strip() print '{} wrote:'.format(self.client_address[0]) print self.data self.request.sendall(self.data.upper()) if __name__ == '__main__': HOST, PORT = 'localhost', 9999 server = SocketServer.TCPServer((HOST, PORT), MyHandler) server.serve_forever()
##2.UDPSerr example
import SocketServer class MyHandler(SocketServer.BaseRequestHandler): def handle(self): data = self.request[0].strip() socket = self.request[1] print '{} wrote:'.format(self.client_address[0]) print data socket.sendto(data.upper(), self.client_address) if __name__ == '__main__': HOST, PORT = 'localhost', 9999 server = SocketServer.UDPServer((HOST, PORT), MyHandler) server.serve_forever()
3. Asynchronous examples
Asynchronous handlers can be constructed through the ThreadingMixIn and ForkingMixIn classes.import socket import threading import SocketServer class MyHandler(SocketServer.BaseRequestHandler): def handle(self): data = self.request.recv(1024) curr_thread = threading.current_thread() response = '{}: {}'.format(curr_thread.name, data) self.request.sendall(response) class Server(SocketServer.ThreadingMixIn, SocketServer.TCPServer): pass def client(ip, port, message): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((ip, port)) try: sock.sendall(message) response = sock.recv(1024) print 'Received: {}'.format(response) finally: sock.close() if __name__ == '__main__': HOST, PORT = 'localhost', 0 server = Server((HOST, PORT), MyHandler) ip, port = server.server_address serer_thread = threading.Thread(target=server.serve_forever) server_thread.daemon = True server_thread.start() print 'Server loop running in thread:', server_thread.name client(ip, port, 'Hello World 1') client(ip, port, 'Hello World 2') client(ip, port, 'Hello World 3') server.shutdown() server.server_close()
4.SocketServer implements non-blocking communication between client and server
(1) Creation SocketServerTCP server
#创建SocketServerTCP服务器: import SocketServer from SocketServer import StreamRequestHandler as SRH from time import ctime host = 'xxx.xxx.xxx.xxx' port = 9999 addr = (host,port) class Servers(SRH): def handle(self): print 'got connection from ',self.client_address self.wfile.write('connection %s:%s at %s succeed!' % (host,port,ctime())) while True: data = self.request.recv(1024) if not data: break print data print "RECV from ", self.client_address[0] self.request.send(data) print 'server is running....' server = SocketServer.ThreadingTCPServer(addr,Servers) server.serve_forever()
from socket import * host = 'xxx.xxx.xxx.xxx' port = 9999 bufsize = 1024 addr = (host,port) client = socket(AF_INET,SOCK_STREAM) client.connect(addr) while True: data = raw_input() if not data or data=='exit': break client.send('%s\r\n' % data) data = client.recv(bufsize) if not data: break print data.strip() client.close()

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
