search
HomeBackend DevelopmentPython TutorialHow to use the heapq module in Python

The heapq module provides heap algorithms. heapq is a tree data structure in which child nodes and parent nodes are sorted. This module provides heap[k]

Print heapq type

import math 
import random
from cStringIO import StringIO

def show_tree(tree, total_width=36, fill=' '):
   output = StringIO()
   last_row = -1
   for i, n in enumerate(tree):
     if i:
       row = int(math.floor(math.log(i+1, 2)))
     else:
       row = 0
     if row != last_row:
       output.write('\n')
     columns = 2**row
     col_width = int(math.floor((total_width * 1.0) / columns))
     output.write(str(n).center(col_width, fill))
     last_row = row
   print output.getvalue()
   print '-' * total_width
   print 
   return

data = random.sample(range(1,8), 7)
print 'data: ', data
show_tree(data)

Print result

data: [3, 2, 6, 5, 4, 7, 1]

     3           
  2      6      
5    4  7     1   
-------------------------
heapq.heappush(heap, item)

Push an element into the heap and modify the above code

heap = []
data = random.sample(range(1,8), 7)
print 'data: ', data

for i in data:
  print 'add %3d:' % i
  heapq.heappush(heap, i)
  show_tree(heap)

Print the result

data: [6, 1, 5, 4, 3, 7, 2]
add  6:
         6         
 ------------------------------------
add  1:
      1 
   6         
------------------------------------
add  5:
      1 
   6       5       
------------------------------------
add  4:
        1 
    4       5       
  6
------------------------------------
add  3:
        1 
    3       5       
  6    4
------------------------------------
add  7:
        1 
    3        5       
  6    4    7
------------------------------------
add  2:
        1 
    3        2       
  6    4    7    5
------------------------------------

It can be understood from the results that the elements of the child node are larger than the elements of the parent node. Sibling nodes will not be sorted.

heapq.heapify(list)

Convert the list type to heap and rearrange the list in linear time.

print 'data: ', data
heapq.heapify(data)
print 'data: ', data

show_tree(data)

Print results

data: [2, 7, 4, 3, 6, 5, 1]
data: [1, 3, 2, 7, 6, 5, 4]

      1         
   3         2     
7    6    5    4  
------------------------------------
heapq.heappop(heap)

Delete and return the smallest element in the heap, by heapify() and heappop() to sort.

data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

heap = []
while data:
  i = heapq.heappop(data)
  print 'pop %3d:' % i
  show_tree(data)
  heap.append(i)
print 'heap: ', heap

Print results

data: [4, 1, 3, 7, 5, 6, 2]

         1
    4         2
  7    5    6    3
------------------------------------

pop  1:
         2
    4         3
  7    5    6
------------------------------------
pop  2:
         3
    4         6
  7    5
------------------------------------
pop  3:
         4
    5         6
  7
------------------------------------
pop  4:
         5
    7         6
------------------------------------
pop  5:
         6
    7
------------------------------------
pop  6:
        7
------------------------------------
pop  7:

------------------------------------
heap: [1, 2, 3, 4, 5, 6, 7]

You can see the sorted heap.

heapq.heapreplace(iterable, n)

Removes the existing element and replaces it with a new value.

data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

for n in [8, 9, 10]:
  smallest = heapq.heapreplace(data, n)
  print 'replace %2d with %2d:' % (smallest, n)
  show_tree(data)

Print results

data: [7, 5, 4, 2, 6, 3, 1]

         1
    2         3
  5    6    7    4
------------------------------------

replace 1 with 8:

         2
    5         3
  8    6    7    4
------------------------------------

replace 2 with 9:

         3
    5         4
  8    6    7    9
------------------------------------

replace 3 with 10:

         4
    5         7
  8    6    10    9
------------------------------------

heapq.nlargest(n, iterable ) and heapq.nsmallest(n, iterable)

Return the n maximum and minimum values ​​in the list

data = range(1,6)
l = heapq.nlargest(3, data)
print l     # [5, 4, 3]

s = heapq.nsmallest(3, data)
print s     # [1, 2, 3]

PS: A calculation question
Construct a minimum heap code example with the number of elements K=5:

#!/usr/bin/env python 
# -*- encoding: utf-8 -*- 
# Author: kentzhan 
# 
 
import heapq 
import random 
 
heap = [] 
heapq.heapify(heap) 
for i in range(15): 
 item = random.randint(10, 100) 
 print "comeing ", item, 
 if len(heap) >= 5: 
  top_item = heap[0] # smallest in heap 
  if top_item < item: # min heap 
   top_item = heapq.heappop(heap) 
   print "pop", top_item, 
   heapq.heappush(heap, item) 
   print "push", item, 
 else: 
  heapq.heappush(heap, item) 
  print "push", item, 
 pass 
 print heap 
pass 
print heap 
 
print "sort" 
heap.sort() 
 
print heap

Result:

How to use the heapq module in Python

For more articles related to the usage of the heapq module in Python, please pay attention to the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How do you append elements to a Python array?How do you append elements to a Python array?Apr 30, 2025 am 12:19 AM

InPython,youappendelementstoalistusingtheappend()method.1)Useappend()forsingleelements:my_list.append(4).2)Useextend()or =formultipleelements:my_list.extend(another_list)ormy_list =[4,5,6].3)Useinsert()forspecificpositions:my_list.insert(1,5).Beaware

How do you debug shebang-related issues?How do you debug shebang-related issues?Apr 30, 2025 am 12:17 AM

The methods to debug the shebang problem include: 1. Check the shebang line to make sure it is the first line of the script and there are no prefixed spaces; 2. Verify whether the interpreter path is correct; 3. Call the interpreter directly to run the script to isolate the shebang problem; 4. Use strace or trusts to track the system calls; 5. Check the impact of environment variables on shebang.

How do you remove elements from a Python array?How do you remove elements from a Python array?Apr 30, 2025 am 12:16 AM

Pythonlistscanbemanipulatedusingseveralmethodstoremoveelements:1)Theremove()methodremovesthefirstoccurrenceofaspecifiedvalue.2)Thepop()methodremovesandreturnsanelementatagivenindex.3)Thedelstatementcanremoveanitemorslicebyindex.4)Listcomprehensionscr

What data types can be stored in a Python list?What data types can be stored in a Python list?Apr 30, 2025 am 12:07 AM

Pythonlistscanstoreanydatatype,includingintegers,strings,floats,booleans,otherlists,anddictionaries.Thisversatilityallowsformixed-typelists,whichcanbemanagedeffectivelyusingtypechecks,typehints,andspecializedlibrarieslikenumpyforperformance.Documenti

What are some common operations that can be performed on Python lists?What are some common operations that can be performed on Python lists?Apr 30, 2025 am 12:01 AM

Pythonlistssupportnumerousoperations:1)Addingelementswithappend(),extend(),andinsert().2)Removingitemsusingremove(),pop(),andclear().3)Accessingandmodifyingwithindexingandslicing.4)Searchingandsortingwithindex(),sort(),andreverse().5)Advancedoperatio

How do you create multi-dimensional arrays using NumPy?How do you create multi-dimensional arrays using NumPy?Apr 29, 2025 am 12:27 AM

Create multi-dimensional arrays with NumPy can be achieved through the following steps: 1) Use the numpy.array() function to create an array, such as np.array([[1,2,3],[4,5,6]]) to create a 2D array; 2) Use np.zeros(), np.ones(), np.random.random() and other functions to create an array filled with specific values; 3) Understand the shape and size properties of the array to ensure that the length of the sub-array is consistent and avoid errors; 4) Use the np.reshape() function to change the shape of the array; 5) Pay attention to memory usage to ensure that the code is clear and efficient.

Explain the concept of 'broadcasting' in NumPy arrays.Explain the concept of 'broadcasting' in NumPy arrays.Apr 29, 2025 am 12:23 AM

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

Explain how to choose between lists, array.array, and NumPy arrays for data storage.Explain how to choose between lists, array.array, and NumPy arrays for data storage.Apr 29, 2025 am 12:20 AM

ForPythondatastorage,chooselistsforflexibilitywithmixeddatatypes,array.arrayformemory-efficienthomogeneousnumericaldata,andNumPyarraysforadvancednumericalcomputing.Listsareversatilebutlessefficientforlargenumericaldatasets;array.arrayoffersamiddlegro

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools