This article mainly introduces the relevant knowledge of Java thread pool framework. It has a very good reference value. Let’s take a look at it with the editor
1. Thread pool structure diagram
2. Example
Define thread interface
public class MyThread extends Thread { @Override publicvoid run() { System.out.println(Thread.currentThread().getName() + "正在执行"); } }
1: newSingleThreadExecutor
ExecutorService pool = Executors. newSingleThreadExecutor(); Thread t1 = new MyThread(); Thread t2 = new MyThread(); Thread t3 = new MyThread(); //将线程放入池中进行执行 pool.execute(t1); pool.execute(t2); pool.execute(t3); //关闭线程池 pool.shutdown();
Input result:
pool-1-thread-1正在执行 pool-1-thread-1正在执行 pool-1-thread-1正在执行
2: newFixedThreadPool
ExecutorService pool = Executors.newFixedThreadPool(3); Thread t1 = new MyThread(); Thread t2 = new MyThread(); Thread t3 = new MyThread(); Thread t4 = new MyThread(); Thread t5 = new MyThread(); //将线程放入池中进行执行 pool.execute(t1); pool.execute(t2); pool.execute(t3); pool.execute(t4); pool.execute(t5); pool.shutdown();
Input result:
pool-1-thread-1正在执行 pool-1-thread-2正在执行 pool-1-thread-1正在执行 pool-1-thread-2正在执行
3 :newCachedThreadPool
ExecutorService pool = Executors.newCachedThreadPool(); Thread t1 = new MyThread(); Thread t2 = new MyThread(); Thread t3 = new MyThread(); Thread t4 = new MyThread(); Thread t5 = new MyThread(); //将线程放入池中进行执行 pool.execute(t1); pool.execute(t2); pool.execute(t3); pool.execute(t4); pool.execute(t5); //关闭线程池 pool.shutdown();
Input result:
pool-1-thread-2正在执行 pool-1-thread-4正在执行 pool-1-thread-3正在执行 pool-1-thread-1正在执行 pool-1-thread-5正在执行
4 :ScheduledThreadPoolExecutor
##
ScheduledExecutorService pool = Executors.newScheduledThreadPool(2); pool.scheduleAtFixedRate(new Runnable() {//每隔一段时间就触发异常 @Override public void run() { //throw new RuntimeException(); System.out.println("================"); } }, 1000, 2000, TimeUnit.MILLISECONDS); pool.scheduleAtFixedRate(new Runnable() {//每隔一段时间打印系统时间,证明两者是互不影响的 @Override public void run() { System.out.println("+++++++++++++++++"); } }, 1000, 2000, TimeUnit.MILLISECONDS);Input result:
================ +++++++++++++++++ +++++++++++++++++ +++++++++++++++++
3. Thread pool core parameters
corePoolSize: The number of core threads in the poolmaximumPoolSize: The maximum thread allowed in the pool number. keepAliveTime: When the number of threads is greater than the core, this is the maximum time for excess idle threads to wait for new tasks before terminating. unit: The time unit of the keepAliveTime parameter. workQueue: Queue used to hold tasks before execution. This queue only holds Runnable tasks submitted by the execute method. threadFactory: Factory used by the executor to create new threads. handler: The handler used when execution is blocked due to exceeding the thread scope and queue capacity. ThreadPoolExecutor: The underlying implementation of the Executors class.3.1 Task queuing mechanism
SynchonousQueue: Synchronous queue, the queue is directly submitted to thread execution without maintaining them. At this time, the thread pool is usually UnboundedLinkedBlockingQueue: Unbounded queue. When the number of thread pool threads reaches the maximum number, new tasks will wait in the queue for execution, which may cause the queue to expand infinitelyArrayBlockingQueue: Bounded Queue helps prevent resource exhaustion. Once the upper limit is reached, new tasks may be lostNote:
newSingleThreadExecutor, newFixedThreadPool use is LinkedBlockingQueuenewCachedThreadPool uses SynchonousQueuenewScheduledThreadPool uses DelayedWorkQueue3.2 Thread execution process
3.3 Thread size determination:
cpu-intensive: Open as few threads as possible, the optimal number of threads is Ncpu+ 1io-intensive: multiple threads, 2NcpuMixed: depending on the situation, it can be split into io-intensive and cou-intensiveMore Java thread pools For framework-related articles, please pay attention to the PHP Chinese website!
Java is widely used in enterprise-level applications because of its platform independence. 1) Platform independence is implemented through Java virtual machine (JVM), so that the code can run on any platform that supports Java. 2) It simplifies cross-platform deployment and development processes, providing greater flexibility and scalability. 3) However, it is necessary to pay attention to performance differences and third-party library compatibility and adopt best practices such as using pure Java code and cross-platform testing.

JavaplaysasignificantroleinIoTduetoitsplatformindependence.1)Itallowscodetobewrittenonceandrunonvariousdevices.2)Java'secosystemprovidesusefullibrariesforIoT.3)ItssecurityfeaturesenhanceIoTsystemsafety.However,developersmustaddressmemoryandstartuptim

ThesolutiontohandlefilepathsacrossWindowsandLinuxinJavaistousePaths.get()fromthejava.nio.filepackage.1)UsePaths.get()withSystem.getProperty("user.dir")andtherelativepathtoconstructthefilepath.2)ConverttheresultingPathobjecttoaFileobjectifne

Java'splatformindependenceissignificantbecauseitallowsdeveloperstowritecodeonceandrunitonanyplatformwithaJVM.This"writeonce,runanywhere"(WORA)approachoffers:1)Cross-platformcompatibility,enablingdeploymentacrossdifferentOSwithoutissues;2)Re

Java is suitable for developing cross-server web applications. 1) Java's "write once, run everywhere" philosophy makes its code run on any platform that supports JVM. 2) Java has a rich ecosystem, including tools such as Spring and Hibernate, to simplify the development process. 3) Java performs excellently in performance and security, providing efficient memory management and strong security guarantees.

JVM implements the WORA features of Java through bytecode interpretation, platform-independent APIs and dynamic class loading: 1. Bytecode is interpreted as machine code to ensure cross-platform operation; 2. Standard API abstract operating system differences; 3. Classes are loaded dynamically at runtime to ensure consistency.

The latest version of Java effectively solves platform-specific problems through JVM optimization, standard library improvements and third-party library support. 1) JVM optimization, such as Java11's ZGC improves garbage collection performance. 2) Standard library improvements, such as Java9's module system reducing platform-related problems. 3) Third-party libraries provide platform-optimized versions, such as OpenCV.

The JVM's bytecode verification process includes four key steps: 1) Check whether the class file format complies with the specifications, 2) Verify the validity and correctness of the bytecode instructions, 3) Perform data flow analysis to ensure type safety, and 4) Balancing the thoroughness and performance of verification. Through these steps, the JVM ensures that only secure, correct bytecode is executed, thereby protecting the integrity and security of the program.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver Mac version
Visual web development tools
