模版基本介绍
模板是一个文本,用于分离文档的表现形式和内容。 模板定义了占位符以及各种用于规范文档该如何显示的各部分基本逻辑(模板标签)。 模板通常用于产生HTML,但是Django的模板也能产生任何基于文本格式的文档。
来一个项目说明
1、建立MyDjangoSite项目具体不多说,参考前面。
2、在MyDjangoSite(包含四个文件的)文件夹目录下新建templates文件夹存放模版。
3、在刚建立的模版下建模版文件user_info.html
<html> <meta http-equiv="Content-type" content="text/html; charset=utf-8"> <title>用户信息</title> <head></head> <body> <h3 id="用户信息">用户信息:</h3> <p>姓名:{{name}}</p> <p>年龄:{{age}}</p> </body> </html>
说明:{{ name }}叫做模版变量;{% if xx %} ,{% for x in list %}模版标签。
4、修改settings.py 中的TEMPLATE_DIRS
导入import os.path
添加 os.path.join(os.path.dirname(__file__), 'templates').replace('\\','/'),
TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. #"E:/workspace/pythonworkspace/MyDjangoSite/MyDjangoSite/templates", os.path.join(os.path.dirname(__file__), 'templates').replace('\\','/'), )
说明:指定模版加载路径。其中os.path.dirname(__file__)为当前settings.py的文件路径,再连接上templates路径。
5、新建视图文件view.py
#vim: set fileencoding=utf-8: #from django.template.loader import get_template #from django.template import Context #from django.http import HttpResponse from django.shortcuts import render_to_response def user_info(request): name = 'zbw' age = 24 #t = get_template('user_info.html') #html = t.render(Context(locals())) #return HttpResponse(html) return render_to_response('user_info.html',locals())
说明:Django模板系统的基本规则: 写模板,创建 Template 对象,创建 Context , 调用 render() 方法。
可以看到上面代码中注释部分
#t = get_template('user_info.html') #html = t.render(Context(locals()))
#return HttpResponse(html)
get_template('user_info.html'),使用了函数 django.template.loader.get_template() ,而不是手动从文件系统加载模板。 该 get_template() 函数以模板名称为参数,在文件系统中找出模块的位置,打开文件并返回一个编译好的 Template 对象。
render(Context(locals()))方法接收传入一套变量context。它将返回一个基于模板的展现字符串,模板中的变量和标签会被context值替换。其中Context(locals())等价于Context({'name':'zbw','age':24}) ,locals()它返回的字典对所有局部变量的名称与值进行映射。
render_to_response Django为此提供了一个捷径,让你一次性地载入某个模板文件,渲染它,然后将此作为 HttpResponse返回。
6、修改urls.py
from django.conf.urls import patterns, include, url from MyDjangoSite.views import user_info # Uncomment the next two lines to enable the admin: # from django.contrib import admin # admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'MyDjangoSite.views.home', name='home'), # url(r'^MyDjangoSite/', include('MyDjangoSite.foo.urls')), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: # url(r'^admin/', include(admin.site.urls)), url(r'^u/$',user_info), )
7、启动开发服务器
基本一个简单的模版应用就完成,启动服务看效果!
效果如图:
模版的继承
减少重复编写相同代码,以及降低维护成本。直接看应用。
1、新建/templates/base.html
<html> <meta http-equiv="Content-type" content="text/html; charset=utf-8"> <title>{% block title %}{% endblock %}</title> <head></head> <body> <h3 id="nbsp-block-nbsp-headTitle-nbsp-nbsp-endblock-nbsp">{% block headTitle %}{% endblock %}</h3> {% block content %} {% endblock %} {% block footer %} <h3 id="嘿-这是继承了模版">嘿,这是继承了模版</h3> {% endblock%} </body> </html>
2、修改/template/user_info.html,以及新建product_info.html
urser_info.html
{% extends "base.html" %} {% block title %}用户信息{% endblock %} <h3 id="nbsp-block-nbsp-headTitle-nbsp-用户信息-nbsp-endblock-nbsp">{% block headTitle %}用户信息:{% endblock %}</h3> {% block content %} <p>姓名:{{name}}</p> <p>年龄:{{age}}</p> {% endblock %}
product_info.html
{% extends "base.html" %} {% block title %}产品信息{% endblock %} <h3 id="nbsp-block-nbsp-headTitle-nbsp-产品信息-nbsp-endblock-nbsp">{% block headTitle %}产品信息:{% endblock %}</h3> {% block content %} {{productName}} {% endblock %}
3、编写视图逻辑,修改views.py
#vim: set fileencoding=utf-8: #from django.template.loader import get_template #from django.template import Context #from django.http import HttpResponse from django.shortcuts import render_to_response def user_info(request): name = 'zbw' age = 24 #t = get_template('user_info.html') #html = t.render(Context(locals())) #return HttpResponse(html) return render_to_response('user_info.html',locals()) def product_info(request): productName = '阿莫西林胶囊' return render_to_response('product_info.html',{'productName':productName})
4、修改urls.py
from django.conf.urls import patterns, include, url from MyDjangoSite.views import user_info,product_info # Uncomment the next two lines to enable the admin: # from django.contrib import admin # admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'MyDjangoSite.views.home', name='home'), # url(r'^MyDjangoSite/', include('MyDjangoSite.foo.urls')), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: # url(r'^admin/', include(admin.site.urls)), url(r'^u/$',user_info), url(r'^p/$',product_info), )
5、启动服务效果如下:
更多XXXXXX相关文章请关注PHP中文网!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Chinese version
Chinese version, very easy to use
