1. The introduction of the concept of generics (why are generics needed)?
First, let’s take a look at the following short code:
public class GenericTest { public static void main(String[] args) { List list = new ArrayList(); list.add("qqyumidi"); list.add("corn"); list.add(100); for (int i = 0; i < list.size(); i++) { String name = (String) list.get(i); // 1 System.out.println("name:" + name); } } }
defines a collection of List type, first adds two string type values to it, and then adds an Integer type value. This is completely allowed, because the default type of list is Object. In subsequent loops, errors similar to //1 may easily occur due to forgetting to add Integer type values to the list before or for other encoding reasons. Because the compilation phase is normal, but a "java.lang.ClassCastException" exception occurs during runtime. Therefore, such errors are difficult to detect during coding.
During the above coding process, we found that there are two main problems:
1. When we put an object into the collection, the collection will not remember the type of the object. When the object is taken out from the collection again , the compiled type of the object is changed to the Object type, but its runtime type is still its own type.
2. Therefore, when taking out the collection elements at //1, artificial forced type conversion to a specific target type is required, and the "java.lang.ClassCastException" exception is prone to occur.
So is there any way to enable a collection to remember the types of elements in the collection, so that as long as there are no problems during compilation, "java.lang.ClassCastException" exceptions will not occur during runtime? The answer is to use generics.
2. What are generics?
Generics, that is, "parameterized types". When it comes to parameters, the most familiar thing is that there are formal parameters when defining a method, and then the actual parameters are passed when the method is called. So how do you understand parameterized types? As the name suggests, the type is parameterized from the original specific type, similar to the variable parameters in the method. At this time, the type is also defined in the form of a parameter (which can be called a type parameter), and then the specific type is passed in when using/calling type (type argument).
It seems a bit complicated. First, let’s take a look at the generic way of writing the example above.
public class GenericTest { public static void main(String[] args) { /* List list = new ArrayList(); list.add("qqyumidi"); list.add("corn"); list.add(100); */ List<String> list = new ArrayList<String>(); list.add("qqyumidi"); list.add("corn"); //list.add(100); // 1 提示编译错误 for (int i = 0; i < list.size(); i++) { String name = list.get(i); // 2 System.out.println("name:" + name); } } }
After adopting the generic writing method, a compilation error will occur when trying to add an Integer type object at //1. Through List
Combined with the above generic definition, we know that in List
public interface List<E> extends Collection<E> { int size(); boolean isEmpty(); boolean contains(Object o); Iterator<E> iterator(); Object[] toArray(); <T> T[] toArray(T[] a); boolean add(E e); boolean remove(Object o); boolean containsAll(Collection<?> c); boolean addAll(Collection<? extends E> c); boolean addAll(int index, Collection<? extends E> c); boolean removeAll(Collection<?> c); boolean retainAll(Collection<?> c); void clear(); boolean equals(Object o); int hashCode(); E get(int index); E set(int index, E element); void add(int index, E element); E remove(int index); int indexOf(Object o); int lastIndexOf(Object o); ListIterator<E> listIterator(); ListIterator<E> listIterator(int index); List<E> subList(int fromIndex, int toIndex); }
We can see that after adopting the generic definition in the List interface, the E in
Naturally, ArrayList is the implementation class of the List interface, and its definition form is:
public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } //...省略掉其他具体的定义过程 }
From this, we understand from the source code perspective why there is a compilation error when adding an Integer type object at //1, and get( at //2 ) is directly the String type.
3. Customized generic interfaces, generic classes and generic methods
From the above content, everyone has understood the specific operation process of generics. We also know that interfaces, classes and methods can also be defined using generics and used accordingly. Yes, in specific use, it can be divided into generic interfaces, generic classes and generic methods.
Customized generic interfaces, generic classes and generic methods are similar to List and ArrayList in the above Java source code. As follows, we look at the simplest definition of generic classes and methods:
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); System.out.println("name:" + name.getData()); } } class Box<T> { private T data; public Box() { } public Box(T data) { this.data = data; } public T getData() { return data; } }
In the definition process of generic interfaces, generic classes and generic methods, we commonly use parameters in the form of T, E, K, V, etc. It is often used to represent generic parameters because it receives type arguments passed in from external uses. So for different type arguments passed in, are the types of the corresponding object instances generated the same?
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); Box<Integer> age = new Box<Integer>(712); System.out.println("name class:" + name.getClass()); // com.qqyumidi.Box System.out.println("age class:" + age.getClass()); // com.qqyumidi.Box System.out.println(name.getClass() == age.getClass()); // true } }
From this, we found that when using generic classes, although different generic arguments are passed in, different types are not actually generated. Generic classes that pass in different generic arguments are There is only one in the memory, which is the original most basic type (Box in this example). Of course, logically we can understand it as multiple different generic types.
The reason is that the purpose of the concept of generics in Java is that it only acts on the code compilation stage. During the compilation process, after the generic results are correctly checked, the relevant information of the generics will be erased. , that is to say, the successfully compiled class file does not contain any generic information. Generic information does not enter the runtime stage.
This can be summed up in one sentence: Generic types can be viewed logically as multiple different types, but in fact they are all the same basic type.
4. Type wildcard
接着上面的结论,我们知道,Box
为了弄清这个问题,我们继续看下下面这个例子:
public class GenericTest { public static void main(String[] args) { Box<Number> name = new Box<Number>(99); Box<Integer> age = new Box<Integer>(712); getData(name); //The method getData(Box<Number>) in the type GenericTest is //not applicable for the arguments (Box<Integer>) getData(age); // 1 } public static void getData(Box<Number> data){ System.out.println("data :" + data.getData()); } }
我们发现,在代码//1处出现了错误提示信息:The method getData(Box
public class GenericTest { public static void main(String[] args) { Box<Integer> a = new Box<Integer>(712); Box<Number> b = a; // 1 Box<Float> f = new Box<Float>(3.14f); b.setData(f); // 2 } public static void getData(Box<Number> data) { System.out.println("data :" + data.getData()); } } class Box<T> { private T data; public Box() { } public Box(T data) { setData(data); } public T getData() { return data; } public void setData(T data) { this.data = data; } }
这个例子中,显然//1和//2处肯定会出现错误提示的。在此我们可以使用反证法来进行说明。
假设Box
好,那我们回过头来继续看“类型通配符”中的第一个例子,我们知道其具体的错误提示的深层次原因了。那么如何解决呢?总部能再定义一个新的函数吧。这和Java中的多态理念显然是违背的,因此,我们需要一个在逻辑上可以用来表示同时是Box
类型通配符一般是使用 ? 代替具体的类型实参。注意了,此处是类型实参,而不是类型形参!且Box>在逻辑上是Box
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); Box<Integer> age = new Box<Integer>(712); Box<Number> number = new Box<Number>(314); getData(name); getData(age); getData(number); } public static void getData(Box<?> data) { System.out.println("data :" + data.getData()); } }
有时候,我们还可能听到类型通配符上限和类型通配符下限。具体有是怎么样的呢?
在上面的例子中,如果需要定义一个功能类似于getData()的方法,但对类型实参又有进一步的限制:只能是Number类及其子类。此时,需要用到类型通配符上限。
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); Box<Integer> age = new Box<Integer>(712); Box<Number> number = new Box<Number>(314); getData(name); getData(age); getData(number); //getUpperNumberData(name); // 1 getUpperNumberData(age); // 2 getUpperNumberData(number); // 3 } public static void getData(Box<?> data) { System.out.println("data :" + data.getData()); } public static void getUpperNumberData(Box<? extends Number> data){ System.out.println("data :" + data.getData()); } }
此时,显然,在代码//1处调用将出现错误提示,而//2 //3处调用正常。
类型通配符上限通过形如Box extends Number>形式定义,相对应的,类型通配符下限为Box super Number>形式,其含义与类型通配符上限正好相反,在此不作过多阐述了。
五.话外篇
本文中的例子主要是为了阐述泛型中的一些思想而简单举出的,并不一定有着实际的可用性。另外,一提到泛型,相信大家用到最多的就是在集合中,其实,在实际的编程过程中,自己可以使用泛型去简化开发,且能很好的保证代码质量。并且还要注意的一点是,Java中没有所谓的泛型数组一说。
对于泛型,最主要的还是需要理解其背后的思想和目的。
更多Java泛型相关文章请关注PHP中文网!

答案:Golang泛型是提高代码可复用性、灵活性、类型安全性和可扩展性的强大工具。详细描述:优势:代码可复用性:通用算法和数据结构灵活性:运行时创建特定类型实例类型安全性:编译时类型检查可扩展性:易于扩展和自定义用途:通用函数:排序、比较等通用数据结构:列表、映射、堆栈等类型别名:简化类型声明约束泛型:确保类型安全性

泛型在Android开发中的应用加强了代码的可重用性、安全性和灵活性。其语法包括声明一个类型变量T,该变量可用于操作类型参数化的数据。泛型实战案例包括自定义数据适配器,允许适配器适应任何类型的自定义数据对象。Android还提供了泛型列表类(如ArrayList)和泛型方法,允许操作不同类型的参数。使用泛型的好处包括代码可重用性、安全性和灵活性,但需要注意指定正确的界限并适度使用,以确保代码的可读性。

Java泛型的优点和缺点什么是Java泛型?Java泛型允许您创建类型化的集合和类,这使得它们能够存储任何类型的对象,而不仅仅是特定类型。这提高了代码的灵活性、重用性,并减少了错误。优点类型安全:泛型在编译时强制执行类型安全,确保集合中只有兼容类型的数据,从而减少了运行时错误。重用性:泛型类和集合可以用于各种数据类型,无需重复编写代码。灵活性:泛型允许创建可灵活地处理不同类型数据的代码,提高了可扩展性和维护性。简洁的代码:泛型可以使代码更简洁、可读。API一致性:JavaCollection

IfaJavaclassisagenerictypeandweareusingitwiththeGsonlibrary forJSONserialization anddeserialization.TheGsonlibraryprovidesaclasscalledcom.google.gson.reflect.TypeTokentostoregenerictypesbycreatingaGsonTypeTokenclassandpasstheclassty

不是,尽管Go语言提供了一种类似于泛型的机制,但并不能被认为是真正的泛型。Go语言提供了一种称为“接口”的机制,可以用来模拟泛型的功能。尽管这种方式可以模拟泛型的功能,但并不像其他编程语言中的泛型那样灵活。在Go语言中,接口只能定义方法,而不能定义变量或属性,这意味着无法像其他编程语言中那样在接口中定义泛型的数据结构。

Golang中接口的泛型应用解析在Golang中,泛型是一个备受争议的话题。由于Golang语言本身并不直接支持泛型,开发者们在使用接口时经常会遇到一些限制和挑战。然而,在最新发布的Golang版本中,引入了对泛型的支持,使得开发者们可以更加灵活地使用接口和泛型结合的方式。本文将探讨Golang中如何使用接口和泛型相结合,并通过具体的代码示例进行解析。什么是

在go语言中,泛型就是编写模板适应所有类型,只有在具体使用时才定义具体变量类型;通过引入类型形参和类型实参的概念,让一个函数能够处理多种不同类型数据的能力,这种编程方式被称为泛型编程。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

Dreamweaver Mac version
Visual web development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),