In "Design Pattern", Singleton is written as a return pointer:
class Singleton{ public: static Singleton* Instance(); protected: Singleton(); private: static Singleton* _instance; };
The corresponding implementation cpp file is:
Singleton* Singleton::_instance; Singleton* Singleton::Instance(){ if( _instance == 0){ _instance = new Singleton; }; return _instance; }
The purpose of designing the constructor as protected is to prevent new outside the class. Some people may design it as private. If you consider If it is possible to inherit this class, it is better to design the constructor as protected, and also need to add a virtual destructor. To prevent others from copying the Singleton object:
Singleton* pSingleton = Singleton::Instance(); Singleton s1 = *pSingleton; Singleton s2 = *pSingleton; 需要将拷贝构造(copy constructor)函数变成 private。
But the question here is, when to delete the Singleton object? According to a basic principle of C++, the object is destroyed wherever it is created. There should also be a destroy method here to delete the Singleton object. It will be more troublesome if you forget to delete it. The Instance function also has the locking problem of simultaneous access by multiple threads. If locking and unlocking are placed at the beginning and end of the Instance function, the performance of the entire function will drop a lot. This is not a good design.
There is a small change that can avoid the memory leak problem caused by forgetting to delete the Singleton object. That is to use std:auto_ptr to contain the Singleton object, define a class static member auto_ptr object, and automatically delete the Singleton object when the static auto_ptr variable is destructed. In order to prevent users from deleting Singleton objects, the destructor needs to be changed from public to protected. The following is the header file SingletonAutoPtr.h:
#include <memory> using namespace std; class CSingletonAutoPtr { private: static auto_ptr<CSingletonAutoPtr> m_auto_ptr; static CSingletonAutoPtr* m_instance; protected: CSingletonAutoPtr(); CSingletonAutoPtr(const CSingletonAutoPtr&); virtual ~CSingletonAutoPtr(); //allow auto_ptr to delete, using protected ~CSingletonAutoPtr() friend class auto_ptr<CSingletonAutoPtr>; public: static CSingletonAutoPtr* GetInstance(); void Test(); };
#p# corresponds to SingletonAutoPtr.cpp as follows:
#include "SingletonAutoPtr.h" #include <iostream> //initial static member vars here CSingletonAutoPtr* CSingletonAutoPtr::m_instance = NULL; auto_ptr<CSingletonAutoPtr> CSingletonAutoPtr::m_auto_ptr; ///////////////////////////////////////// // Construction/Destruction ///////////////////////////////////////// CSingletonAutoPtr::CSingletonAutoPtr() { cout << "CSingletonAutoPtr::CSingletonAutoPtr()" << endl; //put single object into auto_ptr object m_auto_ptr = auto_ptr<CSingletonAutoPtr>(this); } CSingletonAutoPtr::~CSingletonAutoPtr() { cout << "CSingletonAutoPtr::~CSingletonAutoPtr()" << endl; } CSingletonAutoPtr* CSingletonAutoPtr::GetInstance() { //begin lock //.... if(m_instance == NULL) m_instance = new CSingletonAutoPtr(); //end lock //... return m_instance; } void CSingletonAutoPtr::Test() { cout << "CSingletonAutoPtr::Test()" << endl; }
Calling method:
CSingletonAutoPtr* pSingleton = CSingletonAutoPtr::GetInstance(); pSingleton->Test();
Writing a Singleton in C++ requires so much effort, which is beyond our expectation. There are many people who have never used auto_ptr, and std:auto_ptr itself is not perfect. It is based on the object ownership mechanism. In contrast, there is an auto_ptr in Apache Log4cxx, which is based on object counting and is easier to use. Having to use log4cxx just to use a good auto_ptr is not good for many projects. Of course, std:auto_ptr in ANSI C++'s STL is sufficient for writing the above example.
#p#Another idea is that it may be better to design the GetInstance function as a static member, because generally speaking, Singleton objects are not large. Although static members must always occupy memory, it is not a big problem. The destructor here must be set to public. The following is the header file SingleStaticObj.h
class CSingletonStaticObj { private: static CSingletonStaticObj m_instance; protected: CSingletonStaticObj(); CSingletonStaticObj(const CSingletonStaticObj&); public: virtual ~CSingletonStaticObj(); //must public static CSingletonStaticObj& GetInstance(); void Test(); }; 对应的 SingleStaticObj.cpp 文件为: #include "SingletonStaticObj.h" #include <string> #include <iostream> using namespace std; CSingletonStaticObj CSingletonStaticObj::m_instance; CSingletonStaticObj::CSingletonStaticObj() { cout << "CSingletonStaticObj::CSingletonStaticObj()" << endl; } CSingletonStaticObj::~CSingletonStaticObj() { cout << "CSingletonStaticObj::~CSingletonStaticObj()" << endl; } CSingletonStaticObj& CSingletonStaticObj::GetInstance() { return m_instance; } void CSingletonStaticObj::Test() { cout << "CSingletonStaticObj::Test()" << endl; }
The calling method:
CSingletonStaticObj& singleton = CSingletonAutoPtr::GetInstance();singleton.Test();
In terms of code size, it seems that using static member ref is simpler. I prefer this method.
However, static member singleton is not suitable in all situations. For example, GetInstance cannot be used when it needs to dynamically decide to return different instances. For example, FileSystem::GetInstance may need to return new WinFileSystem when running under Windows, and may need to return new LinuxFileSystem when running under Linux/Unix. In this case, you still need to use the above auto_ptr method containing a singleton pointer.

The combination of C# and .NET provides developers with a powerful programming environment. 1) C# supports polymorphism and asynchronous programming, 2) .NET provides cross-platform capabilities and concurrent processing mechanisms, which makes them widely used in desktop, web and mobile application development.

.NETFramework is a software framework, and C# is a programming language. 1..NETFramework provides libraries and services, supporting desktop, web and mobile application development. 2.C# is designed for .NETFramework and supports modern programming functions. 3..NETFramework manages code execution through CLR, and the C# code is compiled into IL and runs by CLR. 4. Use .NETFramework to quickly develop applications, and C# provides advanced functions such as LINQ. 5. Common errors include type conversion and asynchronous programming deadlocks. VisualStudio tools are required for debugging.

C# is a modern, object-oriented programming language developed by Microsoft, and .NET is a development framework provided by Microsoft. C# combines the performance of C and the simplicity of Java, and is suitable for building various applications. The .NET framework supports multiple languages, provides garbage collection mechanisms, and simplifies memory management.

C# and .NET runtime work closely together to empower developers to efficient, powerful and cross-platform development capabilities. 1) C# is a type-safe and object-oriented programming language designed to integrate seamlessly with the .NET framework. 2) The .NET runtime manages the execution of C# code, provides garbage collection, type safety and other services, and ensures efficient and cross-platform operation.

To start C#.NET development, you need to: 1. Understand the basic knowledge of C# and the core concepts of the .NET framework; 2. Master the basic concepts of variables, data types, control structures, functions and classes; 3. Learn advanced features of C#, such as LINQ and asynchronous programming; 4. Be familiar with debugging techniques and performance optimization methods for common errors. With these steps, you can gradually penetrate the world of C#.NET and write efficient applications.

The relationship between C# and .NET is inseparable, but they are not the same thing. C# is a programming language, while .NET is a development platform. C# is used to write code, compile into .NET's intermediate language (IL), and executed by the .NET runtime (CLR).

C#.NET is still important because it provides powerful tools and libraries that support multiple application development. 1) C# combines .NET framework to make development efficient and convenient. 2) C#'s type safety and garbage collection mechanism enhance its advantages. 3) .NET provides a cross-platform running environment and rich APIs, improving development flexibility.

C#.NETisversatileforbothwebanddesktopdevelopment.1)Forweb,useASP.NETfordynamicapplications.2)Fordesktop,employWindowsFormsorWPFforrichinterfaces.3)UseXamarinforcross-platformdevelopment,enablingcodesharingacrossWindows,macOS,Linux,andmobiledevices.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools