search
HomeWeb Front-endJS TutorialIn-depth understanding of closures in js learning

Closure is a relatively difficult point to understand in js, especially for people without programming foundation.

In fact, there are only a few things you should pay attention to when it comes to closures. If you understand them all, it is not difficult to conquer them. Let's talk about some basic principles of closures.

The concept of closure

A closure is a combination of a function and the scope object in the created function. (Scope objects will be discussed below)

To put it more simply, "As long as one or more functions are nested in a function, we can call them a closure."

Similar to this:

function A() {
 var i = 5;
 return function() {
  console.log('i = '+i);
 }
}
 
var a = A();
a(); // i = 5

Principle of closure

1. If the local variables of the external function are called by the closure function, they will not be recycled immediately after the external function is executed.

We know that no matter what language, the operating system will have a garbage collection mechanism to recycle excess allocated space to reduce memory. The life cycle of a function begins when it is called. When the function call is completed, the local variables inside the function will be recycled by the recycling mechanism.

Let’s take the above example as an example. When our external function A is called, the local variable i in A will be recycled by the operating system and cease to exist. However, when we use a closure, the result is not like that. i will not be recycled. Just imagine, if i is recycled, wouldn't the returned function print undefined?

i Why hasn’t it been recycled?

When JavaScript executes a function, a scope object is created, the local variables in the function (the formal parameters of the function are also local variables) are saved in it, and the variables passed into the function are initialized together.

So when A is called, a scope object is created, let’s call it Aa, then this Aa should be like this: Aa { i: 5; }; After A function returns a function, A is executed . The Aa object should have been recycled, but because the returned function uses the attribute i of Aa, the returned function saves a reference to Aa, so Aa will not be recycled.

So by understanding the scope object, you can understand why the local variables of the function will not be recycled immediately when the function call is completed when encountering a closure.

Another example:

function A(age) {
 var name = 'wind';
 var sayHello = function() {
  console.log('hello, '+name+', you are '+age+' years old!');
 };
 return sayHello;
}
var wind = A(20);
wind(); // hello, wind, you are 20 years old!

Can you tell what its scope object Ww is?

Ww{ age: 20; name: 'wind'; };

2. Every time an external function is called, a new closure is generated, and the previous closures still exist and do not affect each other.

3. The same closure will retain the last state, and when it is called again, it will be based on the last time.

The scope object generated each time the external function is called is different. You can think of it this way. In the above example, the parameter age you pass in is different each time, so the object generated is different each time.

Every time an external function is called, a new scope object will be generated.

function A() {
 var num = 42;
 return function() { console.log(num++); }
}
var a = A();
a(); // 42
a(); // 43
 
var b = A(); // 重新调用A(),形成新闭包
b(); // 42

This code allows us to discover two things. First, when we call a(); twice in a row, num will be incremented on the original basis. It means that the same closure will retain the last state, and when it is called again, it will be based on the last time. 2. The result of our b(); is 42, indicating that it is a new closure and is not affected by other closures.

We can think of it this way, just like we blow a soap bubble. Every time I blow it (call an external function), a new soap bubble (closure) will be generated. Multiple soap bubbles can exist at the same time and two soap bubbles can exist at the same time. Bubbles will not affect each other.

4. Multiple functions existing in external functions "live and die together"

The following three functions are declared at the same time and can access and operate the properties (local variables) of the scope object.

var fun1, fun2, fun3;
function A() {
 var num = 42;
 fun1 = function() { console.log(num); }
 fun2 = function() { num++; }
 fun3 = function() { num--; }
}
 
A();
fun1();  // 42
fun2();
fun2();
fun1();  // 44
fun3();
fun1();  //43
 
var old = fun1;
 
A();
fun1();  // 42
old();  // 43  上一个闭包的fun1()

Since functions cannot have multiple return values, I used global variables. Again we can see that a new closure is created the second time we call A().

When a closure encounters a loop variable

When we talk about closures, we have to talk about the situation when a closure encounters a loop variable. Look at the following code:

function buildArr(arr) {
  var result = [];
  for (var i = 0; i < arr.length; i++) {
    var item = &#39;item&#39; + i;
    result.push( function() {console.log(item + &#39; &#39; + arr[i])} );
  }
  return result;
}
 
var fnlist = buildArr([1,2,3]);
fnlist[0](); // item2 undefined
fnlist[1](); // item2 undefined
fnlist[2](); // item2 undefined

How could this happen? The three outputs we envision should be item0 1, item1 2, item2 3. Why is there three item2 undefined stored in the returned result array?

It turns out that when a closure encounters a loop variable, the variable value is saved uniformly after the loop ends. Take our example above, i is a loop variable. When the loop ends, i happens to be 3 after i++, and arr [3] has no value, so it is undefined. Some people may wonder: Why is the value of item2? Shouldn't it be item3? Note that in the last loop, that is, when i = 2, the value of item is item2. When i++, i = 3, the loop conditions are not met and the loop ends. The value of item at this time has been determined, so at this time arr[i] is arr[3], and item is item2. Is this understandable? It makes sense if we change the code to this:

function buildArr(arr) {
  var result = [];
  for (var i = 0; i < arr.length; i++) {
    result.push( function() {console.log(&#39;item&#39; + i + &#39; &#39; + arr[i])} );
  }
  return result;
}
 
var fnlist = buildArr([1,2,3]);
fnlist[1](); // item3 undefined

Then the question is, how to correct it? Let’s look at the code:

function buildArr(arr) {
  var result = [];
  for (var i = 0; i < arr.length; i++) {
    result.push( (function(n) {
      return function() {
       var item = &#39;item&#39; + n;
       console.log(item + &#39; &#39; + arr[n]);
      }
    })(i));
  }
  return result;
}
 
var fnlist = buildArr([1,2,3]);
fnlist[0](); // item0 1
fnlist[1](); // item1 2
fnlist[2](); // item2 3

We can use a self-executing function to bind i, so that every state of i will be stored, and the answer will be the same as we expected.

So when we encounter loop variables when using closures in the future, we must habitually think of using a self-executing function to bind it.

The above is my understanding of closures. If you have any comments or suggestions, I hope we can communicate more in the comment area. Thanks and encourage each other.


Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
From Websites to Apps: The Diverse Applications of JavaScriptFrom Websites to Apps: The Diverse Applications of JavaScriptApr 22, 2025 am 12:02 AM

JavaScript is widely used in websites, mobile applications, desktop applications and server-side programming. 1) In website development, JavaScript operates DOM together with HTML and CSS to achieve dynamic effects and supports frameworks such as jQuery and React. 2) Through ReactNative and Ionic, JavaScript is used to develop cross-platform mobile applications. 3) The Electron framework enables JavaScript to build desktop applications. 4) Node.js allows JavaScript to run on the server side and supports high concurrent requests.

Python vs. JavaScript: Use Cases and Applications ComparedPython vs. JavaScript: Use Cases and Applications ComparedApr 21, 2025 am 12:01 AM

Python is more suitable for data science and automation, while JavaScript is more suitable for front-end and full-stack development. 1. Python performs well in data science and machine learning, using libraries such as NumPy and Pandas for data processing and modeling. 2. Python is concise and efficient in automation and scripting. 3. JavaScript is indispensable in front-end development and is used to build dynamic web pages and single-page applications. 4. JavaScript plays a role in back-end development through Node.js and supports full-stack development.

The Role of C/C   in JavaScript Interpreters and CompilersThe Role of C/C in JavaScript Interpreters and CompilersApr 20, 2025 am 12:01 AM

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.

JavaScript in Action: Real-World Examples and ProjectsJavaScript in Action: Real-World Examples and ProjectsApr 19, 2025 am 12:13 AM

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

JavaScript and the Web: Core Functionality and Use CasesJavaScript and the Web: Core Functionality and Use CasesApr 18, 2025 am 12:19 AM

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding the JavaScript Engine: Implementation DetailsUnderstanding the JavaScript Engine: Implementation DetailsApr 17, 2025 am 12:05 AM

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python vs. JavaScript: The Learning Curve and Ease of UsePython vs. JavaScript: The Learning Curve and Ease of UseApr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python vs. JavaScript: Community, Libraries, and ResourcesPython vs. JavaScript: Community, Libraries, and ResourcesApr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor