search
HomeBackend DevelopmentPHP TutorialLinux Tips: The fastest way to delete a million files at once

Initial review

Yesterday, I saw a very interesting method of deleting a large number of files in a directory. This method comes from Zhenyu Lee in http://www.quora.com/How-can-someone-rapidly-delete-400-000-files.

He did not use find or xargs. He creatively took advantage of the powerful function of rsync and used rsync –delete to replace the target folder with an empty folder. Afterwards, I did an experiment to compare the various methods. To my surprise, Lee's method was much faster than the others. Below is my review.

Environment:

CPU: Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz

MEM: 4G

HD: ST3250318AS: 250G/7200RPM

Method

# Of Files

Deletion Time

rsync -a –delete empty/ s1/ 1000000 6m50.638s

find s2/ -type f -delete 1000000 87m38.826s

find s3/ -type f | xargs -L 100 rm 1000000 83m36.851s

find s4/ -type f | –exclude, you can selectively delete files that meet the conditions. Another point is that this method is perfect when you need to retain this directory for other uses.

Re-evaluation

A few days ago, Keith-Winstein replied to this post on Quora and said that my previous evaluation could not be copied because the operation lasted too long. Just to clarify, these numbers are too large, probably because my computer has been doing so much over the past few years, and there may have been some file system errors in the review. But I'm not sure those are the reasons. Well now, I spent a day with a newer computer and did the review again. This time I used /usr/bin/time, which provides more detailed information. Below are the new results.

(Every time there are 1,000,000 files. The volume of each file is 0.)

Command

Elapsed

System Time

%CPU

cs (Vol/Invol)

rsync -a –delete empty/ a 10.60 1.31 95 106/22

find b/ -type f -delete 28.51 14.46 52 14849/11

find c/ -type f | xargs -L 100 rm 41.69 20.60 54 37048/15074

find d/ -type f |

Original output

# method 1
~/test $ /usr/bin/time -v  rsync -a --delete empty/ a/
        Command being timed: "rsync -a --delete empty/ a/"
        User time (seconds): 1.31
        System time (seconds): 10.60
        Percent of CPU this job got: 95%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:12.42
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 0
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 24378
        Voluntary context switches: 106
        Involuntary context switches: 22
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0
# method 2
        Command being timed: "find b/ -type f -delete"
        User time (seconds): 0.41
        System time (seconds): 14.46
        Percent of CPU this job got: 52%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:28.51
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 0
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 11749
        Voluntary context switches: 14849
        Involuntary context switches: 11
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0
# method 3
find c/ -type f | xargs -L 100 rm
~/test $ /usr/bin/time -v ./delete.sh
        Command being timed: "./delete.sh"
        User time (seconds): 2.06
        System time (seconds): 20.60
        Percent of CPU this job got: 54%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:41.69
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 0
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 1764225
        Voluntary context switches: 37048
        Involuntary context switches: 15074
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0
# method 4
find d/ -type f | xargs -L 100 -P 100 rm
~/test $ /usr/bin/time -v ./delete.sh
        Command being timed: "./delete.sh"
        User time (seconds): 2.86
        System time (seconds): 27.82
        Percent of CPU this job got: 89%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:34.32
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 0
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 1764278
        Voluntary context switches: 929897
        Involuntary context switches: 21720
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0
# method 5
~/test $ /usr/bin/time -v rm -rf f
        Command being timed: "rm -rf f"
        User time (seconds): 0.20
        System time (seconds): 14.80
        Percent of CPU this job got: 47%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:31.29
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 0
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 176
        Voluntary context switches: 15134
        Involuntary context switches: 11
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
The Continued Use of PHP: Reasons for Its EnduranceThe Continued Use of PHP: Reasons for Its EnduranceApr 19, 2025 am 12:23 AM

What’s still popular is the ease of use, flexibility and a strong ecosystem. 1) Ease of use and simple syntax make it the first choice for beginners. 2) Closely integrated with web development, excellent interaction with HTTP requests and database. 3) The huge ecosystem provides a wealth of tools and libraries. 4) Active community and open source nature adapts them to new needs and technology trends.

PHP and Python: Exploring Their Similarities and DifferencesPHP and Python: Exploring Their Similarities and DifferencesApr 19, 2025 am 12:21 AM

PHP and Python are both high-level programming languages ​​that are widely used in web development, data processing and automation tasks. 1.PHP is often used to build dynamic websites and content management systems, while Python is often used to build web frameworks and data science. 2.PHP uses echo to output content, Python uses print. 3. Both support object-oriented programming, but the syntax and keywords are different. 4. PHP supports weak type conversion, while Python is more stringent. 5. PHP performance optimization includes using OPcache and asynchronous programming, while Python uses cProfile and asynchronous programming.

PHP and Python: Different Paradigms ExplainedPHP and Python: Different Paradigms ExplainedApr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP and Python: A Deep Dive into Their HistoryPHP and Python: A Deep Dive into Their HistoryApr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Choosing Between PHP and Python: A GuideChoosing Between PHP and Python: A GuideApr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP and Frameworks: Modernizing the LanguagePHP and Frameworks: Modernizing the LanguageApr 18, 2025 am 12:14 AM

PHP remains important in the modernization process because it supports a large number of websites and applications and adapts to development needs through frameworks. 1.PHP7 improves performance and introduces new features. 2. Modern frameworks such as Laravel, Symfony and CodeIgniter simplify development and improve code quality. 3. Performance optimization and best practices further improve application efficiency.

PHP's Impact: Web Development and BeyondPHP's Impact: Web Development and BeyondApr 18, 2025 am 12:10 AM

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

How does PHP type hinting work, including scalar types, return types, union types, and nullable types?How does PHP type hinting work, including scalar types, return types, union types, and nullable types?Apr 17, 2025 am 12:25 AM

PHP type prompts to improve code quality and readability. 1) Scalar type tips: Since PHP7.0, basic data types are allowed to be specified in function parameters, such as int, float, etc. 2) Return type prompt: Ensure the consistency of the function return value type. 3) Union type prompt: Since PHP8.0, multiple types are allowed to be specified in function parameters or return values. 4) Nullable type prompt: Allows to include null values ​​and handle functions that may return null values.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor