search
HomeBackend DevelopmentPython TutorialUnderstand *args and **kwargs of s variable parameters in Python

Use variable parameters with default parameters

Python supports variable parameters. The easiest way is to use default parameters, for example:

def test_defargs(one, two = 2):
   print 'Required argument: ', one
   print 'Optional argument: ', two

test_defargs(1)
# result:
# Required argument: 1
# Optional argument: 2

test_defargs(1, 3)
# result:
# Required argument: 1
# Optional argument: 3

Use *args and **kwargs when defining the function

Of course, this article mainly Let’s talk about a way to achieve variable parameters (Variable Argument): use *args and **kwargs syntax. Among them, *args is a variable positional arguments list, and **kwargs is a variable keyword arguments list. Also, *args must come before **kwargs because positional arguments must come before keyword arguments.

First introduce the basic usage of the two.

The following example uses *args and contains a required parameter:

def test_args(first, *args):
   print 'Required argument: ', first
   for v in args:
      print 'Optional argument: ', v

test_args(1, 2, 3, 4)
# result:
# Required argument: 1
# Optional argument:  2
# Optional argument:  3
# Optional argument:  4

The following example uses *kwargs and contains a list of required parameters and *args:

def test_kwargs(first, *args, **kwargs):
   print 'Required argument: ', first
   for v in args:
      print 'Optional argument (*args): ', v
   for k, v in kwargs.items():
      print 'Optional argument %s (*kwargs): %s' % (k, v)

test_kwargs(1, 2, 3, 4, k1=5, k2=6)
# results:
# Required argument:  1
# Optional argument (*args):  2
# Optional argument (*args):  3
# Optional argument (*args):  4
# Optional argument k2 (*kwargs): 6
# Optional argument k1 (*kwargs): 5

When calling a function, use *args and * *kwargs

*args and **kwargs syntax can be used not only in function definitions, but also when calling functions. The difference is that if using *args and **kwargs at the location where the function is defined is a process of packing parameters, then when the function is called, it is a process of unpacking parameters. Let’s use an example to deepen our understanding:

def test_args(first, second, third, fourth, fifth):
    print 'First argument: ', first
    print 'Second argument: ', second
    print 'Third argument: ', third
    print 'Fourth argument: ', fourth
    print 'Fifth argument: ', fifth

# Use *args
args = [1, 2, 3, 4, 5]
test_args(*args)
# results:
# First argument:  1
# Second argument:  2
# Third argument:  3
# Fourth argument:  4
# Fifth argument:  5

# Use **kwargs
kwargs = {
    'first': 1,
    'second': 2,
    'third': 3,
    'fourth': 4,
    'fifth': 5
}

test_args(**kwargs)
# results:
# First argument:  1
# Second argument:  2
# Third argument:  3
# Fourth argument:  4
# Fifth argument:  5

Using *args and **kwargs can be very convenient to define functions, and can also enhance scalability for future code maintenance.

Example

def foo(*args, **kwargs):
    print('args = ', args)
    print('kwargs = ', kwargs)
    print('---------------------------------------')

if __name__ == '__main__':
    foo(1,2,3,4)
    foo(a=1,b=2,c=3)
    foo(1,2,3,4, a=1,b=2,c=3)
    foo('a', 1, None, a=1, b='2', c=3)

Note

Note: When defining or calling this kind of function, follow the following rules:
Variable parameters must come after immutable parameters
*args is a variable positional arguments list, **kwargs is A variable list of keyword arguments. And, *args must be before **kwargs, because positional arguments must be before keyword arguments


Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Explain how memory is allocated for lists versus arrays in Python.Explain how memory is allocated for lists versus arrays in Python.May 03, 2025 am 12:10 AM

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

How do you specify the data type of elements in a Python array?How do you specify the data type of elements in a Python array?May 03, 2025 am 12:06 AM

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

What is NumPy, and why is it important for numerical computing in Python?What is NumPy, and why is it important for numerical computing in Python?May 03, 2025 am 12:03 AM

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Discuss the concept of 'contiguous memory allocation' and its importance for arrays.Discuss the concept of 'contiguous memory allocation' and its importance for arrays.May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

How do you slice a Python list?How do you slice a Python list?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

What are some common operations that can be performed on NumPy arrays?What are some common operations that can be performed on NumPy arrays?May 02, 2025 am 12:09 AM

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

How are arrays used in data analysis with Python?How are arrays used in data analysis with Python?May 02, 2025 am 12:09 AM

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment