search
HomeWeb Front-endJS TutorialJava multi-threaded concurrent collaborative producer-consumer design pattern

Two threads, one producer and one consumer

Demand scenario

Two threads, one responsible for production and one responsible for consumption, one producer produces and one consumer consumes

Issues involved

Synchronization issues: how to ensure the same Integrity when resources are accessed concurrently by multiple threads. Commonly used synchronization methods are to use marking or locking mechanisms. The wait() / nofity() methods are two methods of the base class Object, which means that all Java classes will have these two methods. In this way, we can Any object implements a synchronization mechanism.

  Wait() method: When the buffer is full/empty, the producer/consumer thread stops its own execution, gives up the lock, puts itself in a wait state, and allows other threads to execute.

 Notify() method: When the producer/consumer puts/takes out a product from the buffer, it sends an executable notification to other waiting threads, and at the same time gives up the lock and puts itself in a waiting state.

 Code implementation (a total of three classes and a test class with main method)


  Resource.java
  /**
  * Created by yuandl on 2016-10-11./**
  * 资源
  */
  public class Resource {
  /*资源序号*/
  private int number = 0;
  /*资源标记*/
  private boolean flag = false;
  /**
  * 生产资源
  */
  public synchronized void create() {
  if (flag) {//先判断标记是否已经生产了,如果已经生产,等待消费;
  try {
  wait();//让生产线程等待
  } catch (InterruptedException e) {
  e.printStackTrace();
  }
  }
  number++;//生产一个
  System.out.println(Thread.currentThread().getName() + "生产者------------" + number);
  flag = true;//将资源标记为已经生产
  notify();//唤醒在等待操作资源的线程(队列)
  }
  /**
  * 消费资源
  */
  public synchronized void destroy() {
  if (!flag) {
  try {
  wait();
  } catch (InterruptedException e) {
  e.printStackTrace();
  }
  }
  System.out.println(Thread.currentThread().getName() + "消费者****" + number);
  flag = false;
  notify();
  }
 }

 Producer.java

 

  /**
  * Created by yuandl on 2016-10-11.
  *
  /**
  * 生产者
  */
  public class Producer implements Runnable {
  private Resource resource;
  public Producer(Resource resource) {
  this.resource = resource;
  }
  @Override
  public void run() {
  while (true) {
  try {
  Thread.sleep(10);
  } catch (InterruptedException e) {
  e.printStackTrace();
  }
  resource.create();
  }
  }
  }

Consumer.java

 /**
  * 消费者
  */
  public class Consumer implements Runnable {
  private Resource resource;
  public Consumer(Resource resource) {
  this.resource = resource;
  }
  @Override
  public void run() {
  while (true) {
  try {
  Thread.sleep(10);
  } catch (InterruptedException e) {
  e.printStackTrace();
  }
  resource.destroy();
  }
  }
  }

ProducerConsumerTest.java

  /**
  * Created by yuandl on 2016-10-11.
  */
  public class ProducerConsumerTest {
  public static void main(String args[]) {
  Resource resource = new Resource();
  new Thread(new Producer(resource)).start();//生产者线程
  new Thread(new Consumer(resource)).start();//消费者线程
  }
  }

Print Result

Thread-0生产者------------1
 Thread-1消费者****1
  Thread-0生产者------------2
  Thread-1消费者****2
  Thread-0生产者------------3
  Thread-1消费者****3
  Thread-0生产者------------4
  Thread-1消费者****4
  Thread-0生产者------------5
  Thread-1消费者****5
  Thread-0生产者------------6
  Thread-1消费者****6
  Thread-0生产者------------7
  Thread-1消费者****7
  Thread-0生产者------------8
  Thread-1消费者****8
  Thread-0生产者------------9
  Thread-1消费者****9
  Thread-0生产者------------10
  Thread-1消费者****10

You can see from the above printed results that there are no problems

Issues with multiple threads, multiple producers and multiple consumers


Demand scenario

Four threads, two of them are responsible for production, Two are responsible for consumption, the producer produces one and the consumer consumes one

Issues involved

NotifyAll() method: When the producer/consumer puts/takes out a product from the buffer, it issues a message to all other waiting threads The executable notification also gives up the lock and puts itself in a waiting state.

Test the code again


 ProducerConsumerTest.java
  /**
  * Created by yuandl on 2016-10-11.
  */
  public class ProducerConsumerTest {
  public static void main(String args[]) {
  Resource resource = new Resource();
  new Thread(new Consumer(resource)).start();//生产者线程
  new Thread(new Consumer(resource)).start();//生产者线程
  new Thread(new Producer(resource)).start();//消费者线程
  new Thread(new Producer(resource)).start();//消费者线程
  }
  }

Running results

  Thread-0生产者------------100
  Thread-3消费者****100
  Thread-0生产者------------101
  Thread-3消费者****101
  Thread-2消费者****101
  Thread-1生产者------------102
  Thread-3消费者****102
  Thread-0生产者------------103
  Thread-2消费者****103
  Thread-1生产者------------104
  Thread-3消费者****104
  Thread-1生产者------------105
  Thread-0生产者------------106
  Thread-2消费者****106
  Thread-1生产者------------107
  Thread-3消费者****107
  Thread-0生产者------------108
  Thread-2消费者****108
  Thread-0生产者------------109
  Thread-2消费者****109
  Thread-1生产者------------110
  Thread-3消费者****110

Found the problem through the above printed results

101 was produced once and consumed twice


105 was produced but not consumed

Cause analysis

When two threads operate producer production or consumer consumption at the same time, if there is a producer or both threads wait(), notify() again, because one thread has changed the mark and the other thread has changed the mark again. This is caused by no judgment mark when executing directly.

 If judgment mark, only once, will cause threads that should not run to run. A data error has occurred.

 Solution

 The while judgment mark solves the problem of whether the thread wants to run after it obtains execution rights! That is, every time wait() is followed by notify(), the mark must be judged again

 Code improvement (if-> in Resource ;while)

 Resource.java

 
 /**
  * Created by yuandl on 2016-10-11./**
  * 资源
  */
  public class Resource {
  /*资源序号*/
  private int number = 0;
  /*资源标记*/
  private boolean flag = false;
  /**
  * 生产资源
  */
  public synchronized void create() {
  while (flag) {//先判断标记是否已经生产了,如果已经生产,等待消费;
  try {
  wait();//让生产线程等待
  } catch (InterruptedException e) {
  e.printStackTrace();
  }
  }
  number++;//生产一个
  System.out.println(Thread.currentThread().getName() + "生产者------------" + number);
  flag = true;//将资源标记为已经生产
  notify();//唤醒在等待操作资源的线程(队列)
  }
  /**
  * 消费资源
  */
  public synchronized void destroy() {
  while (!flag) {
  try {
  wait();
  } catch (InterruptedException e) {
  e.printStackTrace();
  }
  }
  System.out.println(Thread.currentThread().getName() + "消费者****" + number);
  flag = false;
  notify();
  }
  }

Found the problem again

 When printing to a certain value, such as 74 after production, the program runs stuck, as if it is locked.


 Cause analysis

 Notify: can only wake up one thread. If this party wakes up this party, it is meaningless. Moreover, the while judgment mark + notify will cause "deadlock".

 Solution

 NotifyAll solves the problem that the own thread will definitely wake up the other party's thread.

 Final code improvement (notify()->notifyAll() in Resource)

 Resource.java
 

 /**
  * Created by yuandl on 2016-10-11./**
  * 资源
  */
  public class Resource {
  /*资源序号*/
  private int number = 0;
  /*资源标记*/
  private boolean flag = false;
  /**
  * 生产资源
  */
  public synchronized void create() {
  while (flag) {//先判断标记是否已经生产了,如果已经生产,等待消费;
  try {
  wait();//让生产线程等待
  } catch (InterruptedException e) {
  e.printStackTrace();
  }
  }
  number++;//生产一个
  System.out.println(Thread.currentThread().getName() + "生产者------------" + number);
  flag = true;//将资源标记为已经生产
  notifyAll();//唤醒在等待操作资源的线程(队列)
  }
  /**
  * 消费资源
  */
  public synchronized void destroy() {
  while (!flag) {
  try {
  wait();
  } catch (InterruptedException e) {
  e.printStackTrace();
  }
  }
  System.out.println(Thread.currentThread().getName() + "消费者****" + number);
  flag = false;
  notifyAll();
  }
  }

Running results

Thread-0生产者------------412
  Thread-2消费者****412
  Thread-0生产者------------413
  Thread-3消费者****413
  Thread-1生产者------------414
  Thread-2消费者****414
  Thread-1生产者------------415
  Thread-2消费者****415
  Thread-0生产者------------416
  Thread-3消费者****416
  Thread-1生产者------------417
  Thread-3消费者****417
  Thread-0生产者------------418
  Thread-2消费者****418
  Thread-0生产者------------419
  Thread-3消费者****419
  Thread-1生产者------------420
  Thread-2消费者****420

The above is done, no problems

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
JavaScript Engines: Comparing ImplementationsJavaScript Engines: Comparing ImplementationsApr 13, 2025 am 12:05 AM

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Beyond the Browser: JavaScript in the Real WorldBeyond the Browser: JavaScript in the Real WorldApr 12, 2025 am 12:06 AM

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

Building a Multi-Tenant SaaS Application with Next.js (Backend Integration)Building a Multi-Tenant SaaS Application with Next.js (Backend Integration)Apr 11, 2025 am 08:23 AM

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

How to Build a Multi-Tenant SaaS Application with Next.js (Frontend Integration)How to Build a Multi-Tenant SaaS Application with Next.js (Frontend Integration)Apr 11, 2025 am 08:22 AM

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

JavaScript: Exploring the Versatility of a Web LanguageJavaScript: Exploring the Versatility of a Web LanguageApr 11, 2025 am 12:01 AM

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

The Evolution of JavaScript: Current Trends and Future ProspectsThe Evolution of JavaScript: Current Trends and Future ProspectsApr 10, 2025 am 09:33 AM

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Demystifying JavaScript: What It Does and Why It MattersDemystifying JavaScript: What It Does and Why It MattersApr 09, 2025 am 12:07 AM

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

Is Python or JavaScript better?Is Python or JavaScript better?Apr 06, 2025 am 12:14 AM

Python is more suitable for data science and machine learning, while JavaScript is more suitable for front-end and full-stack development. 1. Python is known for its concise syntax and rich library ecosystem, and is suitable for data analysis and web development. 2. JavaScript is the core of front-end development. Node.js supports server-side programming and is suitable for full-stack development.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use