search
HomeBackend DevelopmentPython TutorialDetailed explanation of python multiple inheritance

class A(object):    # A must be new-style class
   def __init__(self):
    print "enter A"
    print "leave A"
  
class B(C):     # A --> C
   def __init__(self):
    print "enter B"
    super(B, self).__init__()
    print "leave B"

In our impression, super(B, self).__init__() is understood like this: super(B, self) first finds the parent class of B (that is, class A), and then converts the object self of class B for an object of class A, and then the "converted" object of class A calls its own __init__ function.

One day a colleague designed a relatively complex class architecture (let’s not worry about whether the class architecture is reasonably designed, just study this example as a topic), the code is as follows

Code segment 4:

class A(object):
    def __init__(self):
        print "enter A"
        print "leave A"
  
class B(object):
    def __init__(self):
        print "enter B"
        print "leave B"
  
class C(A):
    def __init__(self):
        print "enter C"
        super(C, self).__init__()
        print "leave C"
  
class D(A):
    def __init__(self):
        print "enter D"
        super(D, self).__init__()
        print "leave D"
        class E(B, C):
        def __init__(self):
        print "enter E"
        B.__init__(self)
        C.__init__(self)
        print "leave E"
  
class F(E, D):
    def __init__(self):
        print "enter F"
        E.__init__(self)
        D.__init__(self)
        print "leave F"

f = F(), the result is as follows:

enter F enter E enter B leave B enter C enter D enter A leave A leave D leave C leave E enter D enter A leave A leave D leave F

Obviously, the initialization functions of class A and class D are called twice, which is not the result we expected! The expected result is that the initialization function of class A is called at most twice - in fact, this is a problem that multiple inheritance class systems must face. We draw the class system of code segment 4, as shown below:

object
|
| A
|                                                                                                         It can be seen from the figure that when the initialization function of class C is called, the initialization function of class A should be called, but in fact the initialization function of class D is called. What a weird question!

In other words, the class type sequence of all base classes of a class is recorded in mro. Looking at the record of mro, we found that it contains 7 elements and the 7 class names are:

F E B C D A object

 This explains why using super(C, self).__init__() in C.__init__ will call class D Initialization function. ???

We rewrite code segment 4 as:

Code segment 5:

class A(object):
    def __init__(self):
        print "enter A"
        super(A, self).__init__()  # new
        print "leave A"
  
class B(object):
    def __init__(self):
        print "enter B"
        super(B, self).__init__()  # new
        print "leave B"
  
class C(A):
    def __init__(self):
        print "enter C"
        super(C, self).__init__()
        print "leave C"
  
class D(A):
    def __init__(self):
        print "enter D"
        super(D, self).__init__()
        print "leave D"
        class E(B, C):
        def __init__(self):
        print "enter E"
        super(E, self).__init__()  # change
        print "leave E"
  
class F(E, D):
    def __init__(self):
        print "enter F"
        super(F, self).__init__()  # change
        print "leave F"

f = F(), execution result:

enter F enter E enter B enter C enter D enter A leave A leave D leave C leave B leave E leave F

It can be seen that the initialization of F not only completes the calls of all parent classes, but also ensures that the initialization function of each parent class is only called once.

Summary

 1. Super is not a function, but a class name. The form super(B, self) actually calls the initialization function of the super class,
   and generates a super object;
 2. The super class The initialization function does not do any special operations, it simply records the class type and specific instance;
 3. The call to super(B, self).func is not used to call the func function of the parent class of the current class;

 4. Python's multiple inheritance classes use mro to ensure that the functions of each parent class are called one by one, and to ensure that each parent class function is only called once (if each class uses super);

 5. Mix super classes and non- Binding functions is a dangerous behavior, which may result in the parent class function that should be called not being called or a parent class function being called multiple times.

Some more in-depth questions: As you can see, when printing F.__mro__, the order of the elements inside is found to be F E B C D A object. This is the base class search order of F. As for why it is in this order, and python’s built-in multiple inheritance How the sequence is implemented involves the implementation of the mro sequence. Versions after Python 2.3 use an algorithm called C3, which will be introduced in the next blog.



Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

Explain the purpose of virtual environments in Python.Explain the purpose of virtual environments in Python.Mar 19, 2025 pm 02:27 PM

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!