Recently I am using python for interface testing and found that there are many http request methods in python. Today I will take some time to sort out the relevant content and share it with you. The specific content is as follows:
1. python’s own library---- urllib2
Python's own library urllib2 is used more often. A simple way to use it is as follows:
import urllib2
response = urllib2.urlopen('http://localhost:8080/jenkins/api/json?pretty=true')
print response.read()
Simple get request
import urllib2
import urllib
post_data = urllib.urlencode({})
response = urllib2.urlopen('http://localhost:8080/, post_data)
print response.read()
print response.getheaders()
This is the simplest example of urllib2 sending a post. There are a lot of codes
2. python’s own library - httplib
httplib is a relatively low-level http request module, and urlib is encapsulated based on httplib. The simple use is as follows:
import httplib conn = httplib.HTTPConnection("www.python.org") conn.request("GET", "/index.html") r1 = conn.getresponse() print r1.status, r1.reason data1 = r1.read() conn.request("GET", "/parrot.spam") r2 = conn.getresponse() data2 = r2.read() conn.close()
Simple get request
Let’s look at the post request
import httplib, urllib params = urllib.urlencode({'@number': 12524, '@type': 'issue', '@action': 'show'}) headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} conn = httplib.HTTPConnection("bugs.python.org") conn.request("POST", "", params, headers) response = conn.getresponse() data = response.read() print data conn.close()
Do you think it is too complicated? You have to read the document every time you write, let’s take a look at the third one
Third-party library--requests
Sending a get request is super simple:
print requests.get('http://localhost:8080).text
Just one sentence, let’s take a look at the post request
payload = {'key1': 'value1', 'key2': 'value2'} r = requests.post("http://httpbin.org/post", data=payload) print r.text
also Very simple.
Let’s take a look again if you want to authenticate:
url = 'http://localhost:8080' r = requests.post(url, data={}, auth=HTTPBasicAuth('admin', 'admin')) print r.status_code print r.headers print r.reason
Isn’t it much simpler than urllib2, and requests come with json parsing. This is great
http request in python
import urllib params = urllib.urlencode({key:value,key:value}) resultHtml = urllib.urlopen('[API or 网址]',params) result = resultHtml.read() print result

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

Python provides a variety of ways to download files from the Internet, which can be downloaded over HTTP using the urllib package or the requests library. This tutorial will explain how to use these libraries to download files from URLs from Python. requests library requests is one of the most popular libraries in Python. It allows sending HTTP/1.1 requests without manually adding query strings to URLs or form encoding of POST data. The requests library can perform many functions, including: Add form data Add multi-part file Access Python response data Make a request head

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

Natural language processing (NLP) is the automatic or semi-automatic processing of human language. NLP is closely related to linguistics and has links to research in cognitive science, psychology, physiology, and mathematics. In the computer science

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 Linux new version
SublimeText3 Linux latest version

Notepad++7.3.1
Easy-to-use and free code editor

Dreamweaver CS6
Visual web development tools
