PHP Design Patterns - Six Principles_PHP Tutorial
PHP Design Patterns - Six Principles
It is generally believed that code that follows the following six principles is easy to expand and reusable:
Any object-oriented language should abide by these six principles. If you want to make your code easy to expand and use, try to meet these six principles. It does not necessarily have to strictly follow a certain design pattern, but if your code If the code complies with these six principles, then your code is good code. Good code is not necessarily code written strictly in accordance with the design pattern.
1. Single responsibility
Definition: Do not have more than one reason for a class change. In layman's terms, a class is only responsible for one responsibility.
Scenario: Class T is responsible for two different responsibilities: responsibility P1 and responsibility P2. When class T needs to be modified due to changes in the requirements of responsibility P1, it may cause the function of responsibility P2 that was originally running normally to malfunction. The relationship is as follows:
Modification: Follow the single responsibility principle. Create two classes T1 and T2 respectively, so that T1 can complete the responsibility P1 function and T2 can complete the responsibility P2 function. In this way, when class T1 is modified, responsibility P2 will not be at risk of failure; similarly, when T2 is modified, responsibility P1 will not be at risk of failure. The structure is as follows:
Advantages:
1) It can reduce the complexity of classes. Each class is only responsible for one responsibility and the logic is simple;
2), improve the readability of classes and the maintainability of the system;
3) Risks caused by changes are reduced. Changes are inevitable.
2. Richter Substitution Principle
Definition: All places that reference a base class must be able to transparently use objects of its subclass, which means that subclasses can extend the functions of the parent class, but cannot change the original functions of the parent class
Scenario: There is a function P1, completed by class A. Now it is necessary to expand the function P1, and the expanded function is P, where P consists of the original function P1 and the new function P2. The new function P is completed by the subclass B of class A. When subclass B completes the new function P2, it may cause the original function P1 to malfunction, as shown below:
The CountPriceByJKL class inherits from the CountPrice class. CountPriceByJKL overrides the Count() method, which may affect the function of the original Count method.
Modification: When using inheritance, follow the Liskov substitution principle. When class B inherits class A, except for adding new methods to complete the new function P2, try not to override the methods of parent class A, and try not to overload the methods of parent class A.
3. Dependency Inversion Principle
Definition: High-level modules should not depend on low-level modules, both should rely on their abstractions; abstractions should not depend on details; details should depend on abstractions.
This is the most difficult to understand. It is generally used when building the project framework. For example, the business logic layer is a high-level module relative to the data layer, because the business logic layer needs to call the data layer to connect to the database, but To achieve scalability and high reuse, try not to let the business logic layer depend on the data layer. You can abstract an interface in the data layer and let the business logic layer depend on this abstract interface.
Scenario: Class A (high-level module) directly depends on class B (low-level module). If you want to change class A to depend on class C (low-level module), you must modify the code of class A. In this scenario, class A is generally a high-level module responsible for complex business logic; classes B and C are low-level modules responsible for basic atomic operations; if class A is modified, it will bring unnecessary risks to the program.
The AutoSystem class directly depends on the HondaCar and FordCar classes, which creates a high coupling. If the AutoSystem class wants to control HondaCar or FordCar, it must directly create the corresponding object.
Modification: Modify class A to depend on interface I. Class B and class C each implement interface I. Class A indirectly contacts class B or class C through interface I. This will greatly reduce the chance of modifying class A, as follows Picture:
After this modification, Honda and Ford implemented the ICar interface, providing Run, Stop and Turn function methods. AutoSystem relies on the ICar interface, which forces AutoSystem to rely on abstract interfaces, which enables the AutoSystem class to cope with more changes in requirements.
Advantages:
1) Low-level modules should have abstract classes or interfaces, or both.
2) The declared type of the variable should be an abstract class or interface as much as possible.
3). Follow the Liskov substitution principle when using inheritance.
4. Interface isolation principle
Definition: The client should not rely on interfaces it does not need; the dependence of one class on another class should be based on the smallest interface.
Scenario: Class A depends on class B through interface I, and class C depends on class D through interface I. If interface I is not the minimum interface for class A and class B, then class B and class D must implement they do not need to The method is as shown below:
Modification: Split the bloated interface I into several independent interfaces, and class A and class C establish dependencies with the interfaces they need respectively. That is to say, the principle of interface isolation is adopted.
Note:
1) The interface should be as small as possible, but within limits. It is a fact that refining the interface can improve programming flexibility, but if it is too small, it will cause too many interfaces and complicate the design. So it must be done in moderation.
2) Customize services for classes that rely on interfaces, exposing only the methods it needs to the calling class, and hiding the methods it doesn’t need. Only by focusing on providing customized services for a module can minimal dependencies be established.
3) Improve cohesion and reduce external interaction. Make the interface use the fewest methods to accomplish the most things.
5. Demeter’s Law (Least Known Principle)
Definition: An object should keep minimal knowledge about other objects.
Scenario: The closer the relationship between classes, the greater the degree of coupling. When one class changes, the greater the impact on the other class.
The simple understanding is high cohesion. If the methods and attributes of a class can be made private, try to make them as private as possible.
Note:
1) Only communicate with direct friends and do not talk to strangers.
2) Excessive use of this principle will lead to increased system complexity. Therefore, when adopting Dimit's Law, you must repeatedly weigh the trade-offs to achieve both a clear structure and high cohesion and low coupling.
6. Opening and closing principle
Definition: A software entity such as a class, module, and function should be open for extension and closed for modification.
Scenario: During the life cycle of the software, when the original code of the software needs to be modified due to changes, upgrades, maintenance, etc., errors may be introduced into the old code, or we may have to redo the entire function. structure, and the original code needs to be retested.
Recommendation: When software requirements change, try to achieve changes by extending the behavior of software entities rather than by modifying existing code.

What’s still popular is the ease of use, flexibility and a strong ecosystem. 1) Ease of use and simple syntax make it the first choice for beginners. 2) Closely integrated with web development, excellent interaction with HTTP requests and database. 3) The huge ecosystem provides a wealth of tools and libraries. 4) Active community and open source nature adapts them to new needs and technology trends.

PHP and Python are both high-level programming languages that are widely used in web development, data processing and automation tasks. 1.PHP is often used to build dynamic websites and content management systems, while Python is often used to build web frameworks and data science. 2.PHP uses echo to output content, Python uses print. 3. Both support object-oriented programming, but the syntax and keywords are different. 4. PHP supports weak type conversion, while Python is more stringent. 5. PHP performance optimization includes using OPcache and asynchronous programming, while Python uses cProfile and asynchronous programming.

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP remains important in the modernization process because it supports a large number of websites and applications and adapts to development needs through frameworks. 1.PHP7 improves performance and introduces new features. 2. Modern frameworks such as Laravel, Symfony and CodeIgniter simplify development and improve code quality. 3. Performance optimization and best practices further improve application efficiency.

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP type prompts to improve code quality and readability. 1) Scalar type tips: Since PHP7.0, basic data types are allowed to be specified in function parameters, such as int, float, etc. 2) Return type prompt: Ensure the consistency of the function return value type. 3) Union type prompt: Since PHP8.0, multiple types are allowed to be specified in function parameters or return values. 4) Nullable type prompt: Allows to include null values and handle functions that may return null values.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.