Home >Web Front-end >HTML Tutorial >Codeforces Round #266 (Div. 2)_html/css_WEB-ITnose

Codeforces Round #266 (Div. 2)_html/css_WEB-ITnose

WBOY
WBOYOriginal
2016-06-24 11:57:201020browse

Codeforces Round #266 (Div. 2)

Question link

A: Just judge which one is bigger

B: Enumerate x to sqrt( n), then you can directly calculate y, and then make a judgment

C: First judge whether the sum is a multiple of 3, and then preprocess the position of the prefix sum and the suffix sum corresponding to sum / 3 numbers, and then Scan from beginning to end and combine the current one with the next one

D: First preprocess the difference so that the array represents the way to add line segments, and then each time there is a -1, it can be combined with the previous one 1 to match, multiply the number of solutions by that number. If it is 0, it can match the previous one

E: Use union lookup to split each query into 2 parts, starting from x, x to the root, and then dfs from the root down each time. If the corresponding query is consistent, the corresponding query will be asked. After dfs, if a query is consistent twice, it will output YES if it is consistent, otherwise it will be NO

Code:

#include <cstdio>#include <cstring>int n, m, a, b;int solve() {	if (b >= m * a) return a * n;	int yu = n % m;	int ans = n / m * b;	if (yu * a < b) return ans + yu * a;	return ans + b;}int main() {	scanf("%d%d%d%d", &n, &m, &a, &b);	printf("%d\n", solve());	return 0;}

B:

#include <cstdio>#include <cstring>#include <cmath>#include <algorithm>using namespace std;typedef long long ll;ll n, a, b;int main() {	scanf("%lld%lld%lld", &n, &a, &b);	n = n * 6;	ll ans = 1e18, x, y;	if (a * b >= n) {		x = a;		y = b;		ans = a * b;	}	else {		int flag = 0;		if (a > b) {			flag = 1;			swap(a, b);		}		for (int i = 1; i < 1000000 && i < n; i++) {			ll r = n / i + (n % i != 0);			ll l = i;			if (l > r) swap(l, r);			if (l < a || r < b) continue;			if (i * r < ans) {				ans = i * r;				x = i;				y = r;			}		}		if (flag) swap(x, y);	}	printf("%lld\n%lld %lld\n", ans, x, y);	return 0;}

C:

#include <cstdio>#include <cstring>const int N = 500005;typedef long long ll;int n;ll a[N], pres[N], prec[N], sufs[N], sufc[N];int main() {	scanf("%d", &n);	ll sum = 0;	for (int i = 1; i <= n; i++) {		scanf("%lld", &a[i]);		sum += a[i];	}	if (sum % 3) printf("0\n");	else {		sum /= 3;		for (int i = 1; i <= n; i++) {			pres[i] = pres[i - 1] + a[i];			if (pres[i] == sum)				prec[i] = 1;		}		for (int i = n; i >= 1; i--) {			sufs[i] = sufs[i + 1] + a[i];			sufc[i] = sufc[i + 1];			if (sufs[i] == sum) sufc[i]++;		}		ll ans = 0;		for (int i = 1; i <= n; i++)			ans += prec[i] * sufc[i + 2];		printf("%lld\n", ans);	}	return 0;}

D:

#include <cstdio>#include <cstring>typedef long long ll;const int MOD = 1000000007;const int N = 2005;int n, h, a[N], b[N];int main() {	scanf("%d%d", &n, &h);	for (int i = 1; i <= n; i++) scanf("%d", &a[i]), a[i] = h - a[i];	for (int i = 1; i <= n + 1; i++) b[i] = a[i] - a[i -1];	int ans = 1, cnt = 0;	for (int i = 1; i <= n + 1; i++) {		if (b[i] == 0) ans = (ll)ans * (cnt + 1) % MOD;		else if (b[i] == 1) cnt++;		else if (b[i] == -1) ans = (ll)ans * cnt % MOD, cnt--;		else ans = 0;	}	printf("%d\n", ans);	return 0;}

E:

#include <cstdio>#include <cstring>#include <vector>#include <algorithm>using namespace std;#define MP(a,b) make_pair(a,b)typedef pair<int, int> pii;const int N = 100005;int n, m, parent[N];int find(int x) {	return x == parent[x] ? x : parent[x]  = find(parent[x]);}vector<pii> p, q[N];vector<int> g[N];int tot, vis[N], cnt[N];void dfs(int u) {	vis[u] = 1;	for (int i = 0; i < g[u].size(); i++)		dfs(g[u][i]);	for (int i = 0; i < q[u].size(); i++) {		if (vis[q[u][i].first])			cnt[q[u][i].second]++;	}	vis[u] = 0;}int main() {	scanf("%d%d", &n, &m);	for (int i = 1; i <= n; i++)		parent[i] = i;	int c, x, y;	while (m--) {		scanf("%d%d", &c, &x);		if (c == 2)			p.push_back(MP(find(x), x));		else {			scanf("%d", &y);			if (c == 1) {				g[y].push_back(x);				int px = find(x);				int py = find(y);				if (px != py)					parent[px] = py;			} else {				q[x].push_back(MP(p[y - 1].first, tot));				q[p[y - 1].second].push_back(MP(x, tot));				tot++;			}		}	}	for (int i = 1; i <= n; i++)		if (parent[i] == i) dfs(i);	for (int i = 0; i < tot; i++)		if (cnt[i] == 2) printf("YES\n");		else printf("NO\n");	return 0;}


Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn