一:简介
由paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接。
由于使用的是python这样的能够跨平台运行的语言,所以所有python支持的平台,如Linux, Solaris, BSD, MacOS X, Windows等,paramiko都可以支持,因此,如果需要使用SSH从一个平台连接到另外一个平台,进行一系列的操作时,paramiko是最佳工具之一。
举个常见的例子,现有这样的需求:需要使用windows客户端,远程连接到Linux服务器,查看上面的日志状态,大家通常使用的方法会是:
1:用telnet
2:用PUTTY
3:用WinSCP
4:用XManager等…
那现在如果需求又增加一条,要从服务器上下载文件,该怎么办?那常用的办法可能会是:
1:Linux上安装FTP并配置
2:Linux上安装Sambe并配置…
大家会发现,常见的解决方法都会需要对远程服务器必要的配置,如果远程服务器只有一两台还好说,如果有N台,还需要逐台进行配置,或者需要使用代码进行以上操作时,上面的办法就不太方便了。
使用paramiko可以很好的解决以上问题,比起前面的方法,它仅需要在本地上安装相应的软件(python以及PyCrypto),对远程服务器没有配置要求,对于连接多台服务器,进行复杂的连接操作特别有帮助。
二:安装
安装paramiko有两个先决条件,python和另外一个名为PyCrypto的模块。
通常安装标准的python模块,只需要在模块的根目录下运行:
python setup.py build
python setup.py install
以上两条命令即可,paramiko和PyCrypto也不例外,唯一麻烦的就是安装PyCrypto时,需要GCC库编译,如果没有GCC库会报错,会导致PyCrypto以及paramiko无法安装。
以下以32 位的windows XP为例,说明paramiko的安装过程
1:安装python,2.2以上版本都可以,我使用的是2.5,安装过程略,并假设安装目录是c:\python。
2:判断本地是否安装了GCC,并在PATH变量可以找到,如果没有,可使用windows 版的GCC,即MinGW,下载地址:http://sourceforge.net/projects/mingw/,然后运行下载后的exe文件进行网络安装,假设目录为C:\mingw,在PATH中加入 C:\mingw\bin,并在c:\python\lib\distutils下新建一个名称是distutils.cfg的文件,填入:
[build]
compiler=mingw32
3:下载PyCrypto ,地址是
https://www.dlitz.net/software/pycrypto/
安装PyCrypto:
解压缩
在dos下进入解压缩的目录,运行
C:\python\python.exe setup.py build
C:\python\python.exe setup.py install
安装测试
运行python.exe,在提示符下输入:
Import Crypto
如果没有出现错误提示,说明Crypto安装成功
4:下载paramiko,地址是http://www.lag.net/paramiko/
解压缩
在dos下进 入解压缩的目录,运行
C:\python\python.exe setup.py build
C:\python\python.exe setup.py install
测试paramiko
运行python.exe,在提示符下输入:
Import paramiko
如果没有出现错误提示,说明paramiko安装成功
三: 使用paramiko
如果大家感觉安装paramiko还是略有麻烦的话,当使用到paramiko提供的方便时便会觉得这是十分值得的。
下面是两种使用paramiko连接到linux服务器的代码
方式一:
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect("某IP地址",22,"用户名", "口令")
上面的第二行代码的作用是允许连接不在know_hosts文件中的主机。
方式二:
t = paramiko.Transport((“主机”,”端口”))
t.connect(username = “用户名”, password = “口令”)
如果连接远程主机需要提供密钥,上面第二行代码可改成:
t.connect(username = “用户名”, password = “口令”, hostkey=”密钥”)
下面给出实际的例子:
3.1 windows对linux运行任意命令,并将结果输出
如果linux服务器开放了22端口,在windows端,我们可以使用paramiko远程连接到该服务器,并执行任意命令,然后通过 print或其它方式得到该结果,
#!/usr/bin/python
import paramiko
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect("某IP地址",22,"用户名", "口令")
stdin, stdout, stderr = ssh.exec_command("你的命令")
print stdout.readlines()
ssh.close()
其中的”你的命令”可以任意linux支持的命令,如一些常用的命令:
df:查看磁盘使用情况
uptime:显示系统运行时间信息
cat:显示某文件内容
mv/cp/mkdir/rmdir:对文件或目录进行操作
/sbin/service/ xxxservice start/stop/restart:启动、停止、重启某服务
netstat -ntl |grep 8080:查看8080端口的使用情况
或者 nc -zv localhost :查看所有端口的使用情况
find / -name XXX:查找某文件
这样一来,对于linux的任何操作几乎都可以通过windows端完成,如果对该功能进行引申,还可以同时管理多台服务器。
3.2 从widnows端下载linux服务器上的文件
#!/usr/bin/python
import paramiko
t = paramiko.Transport((“主机”,”端口”))
t.connect(username = “用户名”, password = “口令”)
sftp = paramiko.SFTPClient.from_transport(t)
remotepath='/var/log/system.log'
localpath='/tmp/system.log'
sftp.get(remotepath, localpath)
t.close()
3.3 从widnows端上传文件到linux服务器
#!/usr/bin/python
import paramiko
t = paramiko.Transport((“主机”,”端口”))
t.connect(username = “用户名”, password = “口令”)
sftp = paramiko.SFTPClient.from_transport(t)
remotepath='/var/log/system.log'
localpath='/tmp/system.log'
sftp.put(localpath,remotepath)
t.close()

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
